Unsupervised Discovery and Comparison of Structural Families Across Multiple Samples in Untargeted Metabolomics

In untargeted metabolomics approaches, the inability to structurally annotate relevant features and map them to biochemical pathways is hampering the full exploitation of many metabolomics experiments. Furthermore, variable metabolic content across samples result in sparse feature matrices that are...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Analytical chemistry (Washington) 2017-07, Vol.89 (14), p.7569-7577
Hauptverfasser: van der Hooft, Justin J. J, Wandy, Joe, Young, Francesca, Padmanabhan, Sandosh, Gerasimidis, Konstantinos, Burgess, Karl E. V, Barrett, Michael P, Rogers, Simon
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In untargeted metabolomics approaches, the inability to structurally annotate relevant features and map them to biochemical pathways is hampering the full exploitation of many metabolomics experiments. Furthermore, variable metabolic content across samples result in sparse feature matrices that are statistically hard to handle. Here, we introduce MS2LDA+ that tackles both above-mentioned problems. Previously, we presented MS2LDA, which extracts biochemically relevant molecular substructures (“Mass2Motifs”) from a collection of fragmentation spectra as sets of co-occurring molecular fragments and neutral losses, thereby recognizing building blocks of metabolomics. Here, we extend MS2LDA to handle multiple metabolomics experiments in one analysis, resulting in MS2LDA+. By linking Mass2Motifs across samples, we expose the variability in prevalence of structurally related metabolite families. We validate the differential prevalence of substructures between two distinct samples groups and apply it to fecal samples. Subsequently, within one sample group of urines, we rank the Mass2Motifs based on their variance to assess whether xenobiotic-derived substructures are among the most-variant Mass2Motifs. Indeed, we could ascribe 22 out of the 30 most-variant Mass2Motifs to xenobiotic-derived substructures including paracetamol/acetaminophen mercapturate and dimethylpyrogallol. In total, we structurally characterized 101 Mass2Motifs with biochemically or chemically relevant substructures. Finally, we combined the discovered metabolite families with full scan feature intensity information to obtain insight into core metabolites present in most samples and rare metabolites present in small subsets now linked through their common substructures. We conclude that by biochemical grouping of metabolites across samples MS2LDA+ aids in structural annotation of metabolites and guides prioritization of analysis by using Mass2Motif prevalence.
ISSN:0003-2700
1520-6882
DOI:10.1021/acs.analchem.7b01391