16  MHz wavelength-swept and wavelength-stepped laser architectures based on stretched-pulse active mode locking with a single continuously chirped fiber Bragg grating

We demonstrate a novel high-speed and broadband laser architecture based on stretched pulse active mode locking that provides a wavelength-swept and wavelength-stepped output. The laser utilizes a single intracavity 8.3 meter chirped fiber Bragg grating to generate positive and negative dispersion,...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Optics letters 2017-05, Vol.42 (10), p.2046-2049
Hauptverfasser: Khazaeinezhad, Reza, Siddiqui, Meena, Vakoc, Benjamin J
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We demonstrate a novel high-speed and broadband laser architecture based on stretched pulse active mode locking that provides a wavelength-swept and wavelength-stepped output. The laser utilizes a single intracavity 8.3 meter chirped fiber Bragg grating to generate positive and negative dispersion, and can be operated with or without an intracavity fixed Fabry-Perot etalon to generate wavelength-swept and wavelength-stepped (frequency comb) outputs, respectively. Using a four-path delay line at the output, we achieved 16.3 MHz repetition rates and a 62 nm lasing bandwidth centered at 1550 nm. Single-sided double-pass coherence lengths of 1.25 mm for the wavelength-swept configuration and more than 30 mm for the wavelength-stepped configuration were obtained. Relative intensity noise was measured to be better than -140  dB/Hz. The stretched-pulse mode-locked architecture utilizing long chirped fiber Bragg gratings offers a simple and compact design for a broadband wavelength-tuned output at unprecedented speeds, and can address the need for fast sources in applications such as optical ranging, imaging, and sensing.
ISSN:0146-9592
1539-4794
DOI:10.1364/OL.42.002046