Exposure of Mycobacterium marinum to low-shear modeled microgravity: effect on growth, the transcriptome and survival under stress

Waterborne pathogenic mycobacteria can form biofilms, and certain species can cause hard-to-treat human lung infections. Astronaut health could therefore be compromised if the spacecraft environment or water becomes contaminated with pathogenic mycobacteria. This work uses Mycobacterium marinum to d...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:NPJ microgravity 2016-12, Vol.2 (1), p.16038-16038, Article 16038
Hauptverfasser: Abshire, Camille F, Prasai, Kanchanjunga, Soto, Israel, Shi, Runhua, Concha, Monica, Baddoo, Melody, Flemington, Erik K, Ennis, Don G, Scott, Rona S, Harrison, Lynn
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Waterborne pathogenic mycobacteria can form biofilms, and certain species can cause hard-to-treat human lung infections. Astronaut health could therefore be compromised if the spacecraft environment or water becomes contaminated with pathogenic mycobacteria. This work uses Mycobacterium marinum to determine the physiological changes in a pathogenic mycobacteria grown under low-shear modeled microgravity (LSMMG). M. marinum were grown in high aspect ratio vessels (HARVs) using a rotary cell culture system subjected to LSMMG or the control orientation (normal gravity, NG) and the cultures used to determine bacterial growth, bacterium size, transcriptome changes, and resistance to stress. Two exposure times to LSMMG and NG were examined: bacteria were grown for ~40 h (short), or 4 days followed by re-dilution and growth for ~35 h (long). M. marinum exposed to LSMMG transitioned from exponential phase earlier than the NG culture. They were more sensitive to hydrogen peroxide but showed no change in resistance to gamma radiation or pH 3.5. RNA-Seq detected significantly altered transcript levels for 562 and 328 genes under LSMMG after short and long exposure times, respectively. Results suggest that LSMMG induced a reduction in translation, a downregulation of metabolism, an increase in lipid degradation, and increased chaperone and mycobactin expression. Sigma factor H ( sigH ) was the only sigma factor transcript induced by LSMMG after both short and long exposure times. In summary, transcriptome studies suggest that LSMMG may simulate a nutrient-deprived environment similar to that found within macrophage during infection. SigH is also implicated in the M. marinum LSMMG transcriptome response. Microbiology: Microgravity induces metabolic changes in pathogenic bacterium Microgravity alters gene expression in a pathogenic waterborne microbe — changes that could pose a health risk to astronauts in space. Lynn Harrison from the Louisiana State University Health Sciences Center in Shreveport, USA, and colleagues grew an infectious bacterium called Mycobacterium marinum , a close relative to the microbe responsible for tuberculosis, in a rotary cell culture system that causes the low fluid shear dynamics associated with microgravity. Bacteria in this state grew slower with different expression levels of several hundred genes compared to those cultured under normal gravity conditions. Some of these molecular differences are similar to those elicited when mycobacter
ISSN:2373-8065
2373-8065
DOI:10.1038/npjmgrav.2016.38