T Cell-Restricted Notch Signaling Contributes to Pulmonary Th1 and Th2 Immunity during Cryptococcus neoformans Infection

is a ubiquitous, opportunistic fungal pathogen but the cell signaling pathways that drive T cell responses regulating antifungal immunity are incompletely understood. Notch is a key signaling pathway regulating T cell development, and differentiation and functional responses of mature T cells in the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of immunology (1950) 2017-07, Vol.199 (2), p.643-655
Hauptverfasser: Neal, Lori M, Qiu, Yafeng, Chung, Jooho, Xing, Enze, Cho, Woosung, Malachowski, Antoni N, Sandy-Sloat, Ashley R, Osterholzer, John J, Maillard, Ivan, Olszewski, Michal A
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:is a ubiquitous, opportunistic fungal pathogen but the cell signaling pathways that drive T cell responses regulating antifungal immunity are incompletely understood. Notch is a key signaling pathway regulating T cell development, and differentiation and functional responses of mature T cells in the periphery. The targeting of Notch signaling within T cells has been proposed as a potential treatment for alloimmune and autoimmune disorders, but it is unknown whether disturbances to T cell immunity may render these patients vulnerable to fungal infections. To elucidate the role of Notch signaling during fungal infections, we infected mice expressing the pan-Notch inhibitor dominant negative mastermind-like within mature T cells with Inhibition of T cell-restricted Notch signaling increased fungal burdens in the lungs and CNS, diminished pulmonary leukocyte recruitment, and simultaneously impaired Th1 and Th2 responses. Pulmonary leukocyte cultures from T cell Notch-deprived mice produced less IFN-γ, IL-5, and IL-13 than wild-type cells. This correlated with lower frequencies of IFN-γ-, IL-5-, and IL-13-producing CD4 T cells, reduced expression of Th1 and Th2 associated transcription factors, Tbet and GATA3, and reduced production of IFN-γ by CD8 T cells. In contrast, Th17 responses were largely unaffected by Notch signaling. The changes in T cell responses corresponded with impaired macrophage activation and reduced leukocyte accumulation, leading to diminished fungal control. These results identify Notch signaling as a previously unappreciated regulator of Th1 and Th2 immunity and an important element of antifungal defenses against cryptococcal infection and CNS dissemination.
ISSN:0022-1767
1550-6606
DOI:10.4049/jimmunol.1601715