Deep-learning based, automated segmentation of macular edema in optical coherence tomography

Evaluation of clinical images is essential for diagnosis in many specialties. Therefore the development of computer vision algorithms to help analyze biomedical images will be important. In ophthalmology, optical coherence tomography (OCT) is critical for managing retinal conditions. We developed a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biomedical optics express 2017-07, Vol.8 (7), p.3440-3448
Hauptverfasser: Lee, Cecilia S, Tyring, Ariel J, Deruyter, Nicolaas P, Wu, Yue, Rokem, Ariel, Lee, Aaron Y
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Evaluation of clinical images is essential for diagnosis in many specialties. Therefore the development of computer vision algorithms to help analyze biomedical images will be important. In ophthalmology, optical coherence tomography (OCT) is critical for managing retinal conditions. We developed a convolutional neural network (CNN) that detects intraretinal fluid (IRF) on OCT in a manner indistinguishable from clinicians. Using 1,289 OCT images, the CNN segmented images with a 0.911 cross-validated Dice coefficient, compared with segmentations by experts. Additionally, the agreement between experts and between experts and CNN were similar. Our results reveal that CNN can be trained to perform automated segmentations of clinically relevant image features.
ISSN:2156-7085
2156-7085
DOI:10.1364/BOE.8.003440