Novel double-layer Silastic testicular prosthesis with controlled release of testosterone in vitro, and its effects on castrated rats
Testicular prostheses have been used to deal with anorchia for nearly 80 years. Here, we evaluated a novel testicular prosthesis that can controllably release hormones to maintain physiological levels of testosterone in vivo for a long time. Silastic testicular prostheses with controlled release of...
Gespeichert in:
Veröffentlicht in: | Asian journal of andrology 2017-07, Vol.19 (4), p.433-438 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Testicular prostheses have been used to deal with anorchia for nearly 80 years. Here, we evaluated a novel testicular prosthesis that can controllably release hormones to maintain physiological levels of testosterone in vivo for a long time. Silastic testicular prostheses with controlled release of testosterone (STPT) with different dosages of testosterone undecanoate (TU) were prepared and implanted into castrated Sprague-Dawley rats. TU oil was applied by oral administration to a separate group of castrated rats. Castrated untreated and sham-operated groups were used as controls. Serum samples from every group were collected to measure the levels of testosterone (T), follicle-stimulating hormone and luteinizing hormone (LH). Maximum intracavernous penile pressure (ICPmax) was recorded. The prostates and seminal vesicles were weighed and subjected to histology, and a terminal dexynucleotidyl transferase-mediated UTP nick end labeling (TUNEL) assay was used to evaluate apoptosis. Our results revealed that the weights of these tissues and the levels of T and LH showed significant statistical differences in the oral administration and TU replacement groups compared with the castrated group (P 〈 0.05). Compared with the sham-operated group, the ICPmax, histology and TUNEL staining for apoptosis, showed no significant differences in the hormone replacement groups implanted with medium and high doses of STPT. Our results suggested that this new STPT could release TU stably through its double semi-permeable membranes with excellent biocompatibility. The study provides a new approach for testosterone replacement therapy. |
---|---|
ISSN: | 1008-682X 1745-7262 |
DOI: | 10.4103/1008-682X.175786 |