Evidence that interfibrillar load transfer in tendon is supported by small diameter fibrils and not extrafibrillar tissue components

ABSTRACT Collagen fibrils in tendon are believed to be discontinuous and transfer tensile loads through shear forces generated during interfibrillar sliding. However, the structures that transmit these interfibrillar forces are unknown. Various extrafibrillar tissue components (e.g., glycosaminoglyc...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of orthopaedic research 2017-10, Vol.35 (10), p.2127-2134
Hauptverfasser: Szczesny, Spencer E., Fetchko, Kristen L., Dodge, George R., Elliott, Dawn M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:ABSTRACT Collagen fibrils in tendon are believed to be discontinuous and transfer tensile loads through shear forces generated during interfibrillar sliding. However, the structures that transmit these interfibrillar forces are unknown. Various extrafibrillar tissue components (e.g., glycosaminoglycans, collagens XII and XIV) have been suggested to transmit interfibrillar loads by bridging collagen fibrils. Alternatively, collagen fibrils may interact directly through physical fusions and interfibrillar branching. The objective of this study was to test whether extrafibrillar proteins are necessary to transmit load between collagen fibrils or if interfibrillar load transfer is accomplished directly by the fibrils themselves. Trypsin digestions were used to remove a broad spectrum of extrafibrillar proteins and measure their contribution to the multiscale mechanics of rat tail tendon fascicles. Additionally, images obtained from serial block‐face scanning electron microscopy were used to determine the three‐dimensional fibrillar organization in tendon fascicles and identify any potential interfibrillar interactions. While trypsin successfully removed several extrafibrillar tissue components, there was no change in the macroscale fascicle mechanics or fibril:tissue strain ratio. Furthermore, the imaging data suggested that a network of smaller diameter fibrils (
ISSN:0736-0266
1554-527X
DOI:10.1002/jor.23517