A Fast and Accurate Algorithm to Test for Binary Phenotypes and Its Application to PheWAS

The availability of electronic health record (EHR)-based phenotypes allows for genome-wide association analyses in thousands of traits and has great potential to enable identification of genetic variants associated with clinical phenotypes. We can interpret the phenome-wide association study (PheWAS...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:American journal of human genetics 2017-07, Vol.101 (1), p.37-49
Hauptverfasser: Dey, Rounak, Schmidt, Ellen M., Abecasis, Goncalo R., Lee, Seunggeun
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The availability of electronic health record (EHR)-based phenotypes allows for genome-wide association analyses in thousands of traits and has great potential to enable identification of genetic variants associated with clinical phenotypes. We can interpret the phenome-wide association study (PheWAS) result for a single genetic variant by observing its association across a landscape of phenotypes. Because a PheWAS can test thousands of binary phenotypes, and most of them have unbalanced or often extremely unbalanced case-control ratios (1:10 or 1:600, respectively), existing methods cannot provide an accurate and scalable way to test for associations. Here, we propose a computationally fast score-test-based method that estimates the distribution of the test statistic by using the saddlepoint approximation. Our method is much (∼100 times) faster than the state-of-the-art Firth’s test. It can also adjust for covariates and control type I error rates even when the case-control ratio is extremely unbalanced. Through application to PheWAS data from the Michigan Genomics Initiative, we show that the proposed method can control type I error rates while replicating previously known association signals even for traits with a very small number of cases and a large number of controls.
ISSN:0002-9297
1537-6605
DOI:10.1016/j.ajhg.2017.05.014