MicroRNA-223-3p Regulates Ovarian Cancer Cell Proliferation and Invasion by Targeting SOX11 Expression
MicroRNAs (miRNAs) often display different expression in many cancers and other diseases in current research studies. miR-223 expression is upregulated in rheumatoid arthritis. Also, miR-223 expression has been demonstrated to be highly expressed in pancreatic cancer and gastric cancer in comparison...
Gespeichert in:
Veröffentlicht in: | International journal of molecular sciences 2017-06, Vol.18 (6), p.1208 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | MicroRNAs (miRNAs) often display different expression in many cancers and other diseases in current research studies. miR-223 expression is upregulated in rheumatoid arthritis. Also, miR-223 expression has been demonstrated to be highly expressed in pancreatic cancer and gastric cancer in comparison with normal tissue. However, whether miR-223 displays different expression in ovarian cancer and what its underlying functions are in ovarian cancer have remained unclear. In this study, we demonstrated that miR-223-3p was upregulated in ovarian cancer tissue. Next, we explored the functional role of miR-223-3p in ovarian cancer using SKOV3 and OVCAR3 cell lines. Our results suggested that miR-223-3p mimic promoted ovarian cancer cell proliferation, migration, and invasion in vitro. However, miR-223-3p inhibitor displayed the opposite effects. In addition, we demonstrated that miR-223-3p mimic promoted tumor growth in vivo. Furthermore, we found SOX11 (sex determining region Y-box 11) was inversely expressed with miR-223-3p in ovarian cancer (OC) cell lines and tissue specimens. miR-223-3p mimic decreased SOX11 expression. Overexpressing SOX11 inhibited ovarian cancer cell proliferation and invasion, which indicated that miR-223-3p regulated OC cell proliferation and invasion through targeting SOX11 expression. In conclusion, the findings of the present study demonstrated that miR-223-3p could be a potential therapeutic for ovarian cancer. |
---|---|
ISSN: | 1422-0067 1661-6596 1422-0067 |
DOI: | 10.3390/ijms18061208 |