The effect of alpha-linolenic acid on glycemic control in individuals with type 2 diabetes: A systematic review and meta-analysis of randomized controlled clinical trials

Polyunsaturated fats (PUFAs) have been shown to reduce type 2 diabetes (T2DM) risk and improve insulin responsiveness in T2DM subjects, but whether the plant sources of omega-3 PUFA (alpha-linolenic acid [ALA]) have an effect on glycemic control requires further investigation. The parameters of inte...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Medicine (Baltimore) 2017-05, Vol.96 (21), p.e6531-e6531
Hauptverfasser: Jovanovski, Elena, Li, Dandan, Thanh Ho, Hoang Vi, Djedovic, Vladimir, Ruiz Marques, Any de Castro, Shishtar, Esra, Mejia, Sonia Blanco, Sievenpiper, John L., de Souza, Russell J., Duvnjak, Lea, Vuksan, Vladimir
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Polyunsaturated fats (PUFAs) have been shown to reduce type 2 diabetes (T2DM) risk and improve insulin responsiveness in T2DM subjects, but whether the plant sources of omega-3 PUFA (alpha-linolenic acid [ALA]) have an effect on glycemic control requires further investigation. The parameters of interest were glycated hemoglobin (HbA1c), fasting blood glucose (FBG), fasting blood insulin (FBI), homeostatic model assessment for insulin resistance (HOMA-IR), fructosamine, and glycated albumin. A comprehensive search was conducted with MEDLINE, Embase, CINAHL, and Cochrane. Eligible studies included randomized controlled trials (RCTs) ≥1 month in duration that compared diets enriched in ALA with usual diets on glycemic parameters. For each study, the risk of bias as well as the study quality was assessed. Using the statistical software RevMan (v5.3), data were pooled using the generic inverse method with random effects model, and final results were expressed as mean differences (MD) with 95% confidence intervals (CI). Heterogeneity was assessed by the Cochran Q statistic and quantified by the I statistic. A total of 8 trials (N = 212) were included in the meta-analysis. Compared to a control diet, a median dose of 4.4 g/day of ALA intake for a median duration of 3 months did not affect HbA1c (%) (MD = -.01; [95%: -.32, .31], P = .96). A median ALA dose of 5.4 g/day did not lower FBG (MD = .07; [95% CI: -.61, .76], P = .84) or FBI (MD = 7.03, [95% CI: -5.84, 19.89], P = .28). Summary effect estimates were generally compromised by considerable and unexplained heterogeneity (I ≥75%). In the subgroup analysis of continuous predictors, a reduction in HbA1c (%) and FBG (mmol/L) was significantly associated with an increased intake of ALA. Further adjustment for Publication Bias using Duval and Tweedie's trim-and-fill analysis provided an adjusted, significant MD of -.25 (95% CI: -.38, -.12; P 
ISSN:0025-7974
1536-5964
DOI:10.1097/MD.0000000000006531