Silica-Gentamicin Nanohybrids: Synthesis and Antimicrobial Action

Orthopedic applications commonly require the administration of systemic antibiotics. Gentamicin is one of the most commonly used aminoglycosides in the treatment and prophylaxis of infections associated with orthopedic applications, but gentamicin has a short half-life. However, silica nanoparticles...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Materials 2016-03, Vol.9 (3), p.170-170
Hauptverfasser: Mosselhy, Dina Ahmed, Ge, Yanling, Gasik, Michael, Nordström, Katrina, Natri, Olli, Hannula, Simo-Pekka
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Orthopedic applications commonly require the administration of systemic antibiotics. Gentamicin is one of the most commonly used aminoglycosides in the treatment and prophylaxis of infections associated with orthopedic applications, but gentamicin has a short half-life. However, silica nanoparticles (SiO₂ NPs) can be used as elegant carriers for antibiotics to prolong their release. Our goal is the preparation and characterization of SiO₂-gentamicin nanohybrids for their potential antimicrobial administration in orthopedic applications. gentamicin release profile from the nanohybrids (gentamicin-conjugated SiO₂ NPs) prepared by the base-catalyzed precipitation exhibited fast release (21.4%) during the first 24 h and further extension with 43.9% release during the five-day experiment. Antimicrobial studies of the SiO₂-gentamicin nanohybrids native SiO₂ NPs and free gentamicin were performed against ( ), ( ) and ( ). SiO₂-gentamicin nanohybrids were most effective against . SiO₂ NPs play no antimicrobial role. Parallel antimicrobial studies for the filter-sterilized gentamicin were performed to assess the effect of ultraviolet (UV)-irradiation on gentamicin. In summary, the initial fast gentamicin release fits the need for high concentration of antibiotics after orthopedic surgical interventions. Moreover, the extended release justifies the promising antimicrobial administration of the nanohybrids in bone applications.
ISSN:1996-1944
1996-1944
DOI:10.3390/ma9030170