Graphene‐Based Polymer Bilayers with Superior Light‐Driven Properties for Remote Construction of 3D Structures

3D structure assembly in advanced functional materials is important for many areas of technology. Here, a new strategy exploits IR light‐driven bilayer polymeric composites for autonomic origami assembly of 3D structures. The bilayer sheet comprises a passive layer of poly(dimethylsiloxane) (PDMS) a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advanced science 2017-05, Vol.4 (5), p.1600437-n/a
Hauptverfasser: Tang, Zhenhua, Gao, Ziwei, Jia, Shuhai, Wang, Fei, Wang, Yonglin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:3D structure assembly in advanced functional materials is important for many areas of technology. Here, a new strategy exploits IR light‐driven bilayer polymeric composites for autonomic origami assembly of 3D structures. The bilayer sheet comprises a passive layer of poly(dimethylsiloxane) (PDMS) and an active layer comprising reduced graphene oxides (RGOs), thermally expanding microspheres (TEMs), and PDMS. The corresponding fabrication method is versatile and simple. Owing to the large volume expansion of the TEMs, the two layers exhibit large differences in their coefficients of thermal expansion. The RGO‐TEM‐PDMS/PDMS bilayers can deflect toward the PDMS side upon IR irradiation via the cooperative effect of the photothermal effect of the RGOs and the expansion of the TEMs, and exhibit excellent light‐driven, a large bending deformation, and rapid responsive properties. The proposed RGO‐TEM‐PDMS/PDMS composites with excellent light‐driven bending properties are demonstrated as active hinges for building 3D geometries such as bidirectionally folded columns, boxes, pyramids, and cars. The folding angle (ranging from 0° to 180°) is well‐controlled by tuning the active hinge length. Furthermore, the folded 3D architectures can permanently preserve the deformed shape without energy supply. The presented approach has potential in biomedical devices, aerospace applications, microfluidic devices, and 4D printing. Light‐driven construction of 3D structures in graphene‐based bilayer sheets are proposed. The bilayer (reduced graphene oxide‐thermally expanding microspheres‐poly(dimethylsiloxane) (PDMS)/PDMS) can be driven by IR irradiation owing to the photothermal effect of graphene and the asymmetric expansion of the bilayer structures. The bimorph sheets are used as hinges for fabricating 3D objects and exhibit potential applications in biomedical engineering and aerospace.
ISSN:2198-3844
2198-3844
DOI:10.1002/advs.201600437