A fast image simulation algorithm for scanning transmission electron microscopy
Image simulation for scanning transmission electron microscopy at atomic resolution for samples with realistic dimensions can require very large computation times using existing simulation algorithms. We present a new algorithm named PRISM that combines features of the two most commonly used algorit...
Gespeichert in:
Veröffentlicht in: | Advanced structural and chemical imaging 2017-05, Vol.3 (1), p.13-11, Article 13 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Image simulation for scanning transmission electron microscopy at atomic resolution for samples with realistic dimensions can require very large computation times using existing simulation algorithms. We present a new algorithm named PRISM that combines features of the two most commonly used algorithms, namely the Bloch wave and multislice methods. PRISM uses a Fourier interpolation factor
f
that has typical values of 4–20 for atomic resolution simulations. We show that in many cases PRISM can provide a speedup that scales with
f
4
compared to multislice simulations, with a negligible loss of accuracy. We demonstrate the usefulness of this method with large-scale scanning transmission electron microscopy image simulations of a crystalline nanoparticle on an amorphous carbon substrate. |
---|---|
ISSN: | 2198-0926 2198-0926 |
DOI: | 10.1186/s40679-017-0046-1 |