Homological Properties of Rings of Functional-Analytic Type

Strong flatness properties are established for a large class of functional-analytic rings including all C*-algebras. This is later used to prove that all those rings satisfy excision in Hochschild and in cyclic homology over almost arbitrary rings of coefficients and that, for stable C*-algebras, th...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the National Academy of Sciences - PNAS 1990-07, Vol.87 (13), p.4910-4911
1. Verfasser: Wodzicki, Mariusz
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Strong flatness properties are established for a large class of functional-analytic rings including all C*-algebras. This is later used to prove that all those rings satisfy excision in Hochschild and in cyclic homology over almost arbitrary rings of coefficients and that, for stable C*-algebras, the Hochschild and cyclic homology groups defined over an arbitrary coefficient ring$k \subset \mathbb{C}$of complex numbers (e.g., k=Z or$\overline{\mathbb{Q}}$) vanish in all dimensions.
ISSN:0027-8424
1091-6490
DOI:10.1073/pnas.87.13.4910