Homological Properties of Rings of Functional-Analytic Type
Strong flatness properties are established for a large class of functional-analytic rings including all C*-algebras. This is later used to prove that all those rings satisfy excision in Hochschild and in cyclic homology over almost arbitrary rings of coefficients and that, for stable C*-algebras, th...
Gespeichert in:
Veröffentlicht in: | Proceedings of the National Academy of Sciences - PNAS 1990-07, Vol.87 (13), p.4910-4911 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Strong flatness properties are established for a large class of functional-analytic rings including all C*-algebras. This is later used to prove that all those rings satisfy excision in Hochschild and in cyclic homology over almost arbitrary rings of coefficients and that, for stable C*-algebras, the Hochschild and cyclic homology groups defined over an arbitrary coefficient ring$k \subset \mathbb{C}$of complex numbers (e.g., k=Z or$\overline{\mathbb{Q}}$) vanish in all dimensions. |
---|---|
ISSN: | 0027-8424 1091-6490 |
DOI: | 10.1073/pnas.87.13.4910 |