Quantitative longitudinal imaging of activated microglia as a marker of inflammation in the pilocarpine rat model of epilepsy using [11C]-(R)-PK11195 PET and MRI
Inflammation may play a role in the development of epilepsy after brain insults. [11C]-(R)-PK11195 binds to TSPO, expressed by activated microglia. We quantified [11C]-(R)-PK11195 binding during epileptogenesis after pilocarpine-induced status epilepticus (SE), a model of temporal lobe epilepsy. Nin...
Gespeichert in:
Veröffentlicht in: | Journal of cerebral blood flow and metabolism 2017-04, Vol.37 (4), p.1251-1263 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Inflammation may play a role in the development of epilepsy after brain insults. [11C]-(R)-PK11195 binds to TSPO, expressed by activated microglia. We quantified [11C]-(R)-PK11195 binding during epileptogenesis after pilocarpine-induced status epilepticus (SE), a model of temporal lobe epilepsy.
Nine male rats were studied thrice (D0-1, D0 + 6, D0 + 35, D0 = SE induction). In the same session, 7T T2-weighted images and DTI for mean diffusivity (MD) and fractional anisotropy (FA) maps were acquired, followed by dynamic PET/CT. On D0 + 35, femoral arterial blood was sampled for rat-specific metabolite-corrected arterial plasma input functions (AIFs). In multiple MR-derived ROIs, we assessed four kinetic models (two with AIFs; two using a reference region), standard uptake values (SUVs), and a model with a mean AIF.
All models showed large (up to two-fold) and significant TSPO binding increases in regions expected to be affected, and comparatively little change in the brainstem, at D0 + 6. Some individuals showed increases at D0 + 35. AIF models yielded more consistent increases at D0 + 6. FA values were decreased at D0 + 6 and had recovered by D0 + 35. MD was increased at D0 + 6 and more so at D0 + 35.
[11C]-(R)-PK11195 PET binding and MR biomarker changes could be detected with only nine rats, highlighting the potential of longitudinal imaging studies. |
---|---|
ISSN: | 0271-678X 1559-7016 1559-7016 |
DOI: | 10.1177/0271678X16653615 |