Impact of Acetazolamide, a Carbonic Anhydrase Inhibitor, on the Development of Intestinal Polyps in Min Mice

Colorectal cancer is a common cancer worldwide. Carbonic anhydrase (CA) catalyzes the reversible conversion of carbon dioxide to bicarbonate ion and a proton, and its inhibitor is reported to reduce cancer cell proliferation and induce apoptosis. Therefore, we asked whether acetazolamide, a CA inhib...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of molecular sciences 2017-04, Vol.18 (4), p.851-851
Hauptverfasser: Noma, Nobuharu, Fujii, Gen, Miyamoto, Shingo, Komiya, Masami, Nakanishi, Ruri, Shimura, Misato, Tanuma, Sei-Ichi, Mutoh, Michihiro
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Colorectal cancer is a common cancer worldwide. Carbonic anhydrase (CA) catalyzes the reversible conversion of carbon dioxide to bicarbonate ion and a proton, and its inhibitor is reported to reduce cancer cell proliferation and induce apoptosis. Therefore, we asked whether acetazolamide, a CA inhibitor, could inhibit intestinal carcinogenesis. Five-week-old male -mutant mice, Min mice, were fed a AIN-76A diet containing 200 or 400 ppm acetazolamide. As a result, acetazolamide treatment reduced the total number of intestinal polyps by up to 50% compared to the control group. In addition, the acetazolamide-treated group had low cell proliferation and a high apoptosis ratio in the intestinal polyp epithelial cells. Moreover, the mRNA expression level of proinflammatory cytokines, such as , involved in the cell proliferation was decreased in the polyp part of the acetazolamide-treated group. Next, we examined the effects of acetazolamide on the activation of several transcriptional factors (AP-1, HIF, HSF, NF-κB, NRF2, p53, and STAT3) using a reporter gene assay in human colon cancer cells, Caco-2 cells. Among the examined transcriptional factors, NRF2 transcriptional activation was strongly induced. NRF2-targeting genes, , , , and , were also elevated in the intestinal polyps of acetazolamide-treated Min mice. Our results suggested that CA is involved in intestinal carcinogenesis. Acetazolamide could inhibit polyp formation through suppressing local/general cytokine levels, i.e., IL-6, via NRF2 activation.
ISSN:1422-0067
1661-6596
1422-0067
DOI:10.3390/ijms18040851