Automated Screening of Children With Obstructive Sleep Apnea Using Nocturnal Oximetry: An Alternative to Respiratory Polygraphy in Unattended Settings
Nocturnal oximetry has become known as a simple, readily available, and potentially useful diagnostic tool of childhood obstructive sleep apnea (OSA). However, at-home respiratory polygraphy (HRP) remains the preferred alternative to polysomnography (PSG) in unattended settings. The aim of this stud...
Gespeichert in:
Veröffentlicht in: | Journal of clinical sleep medicine 2017-05, Vol.13 (5), p.693-702 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Nocturnal oximetry has become known as a simple, readily available, and potentially useful diagnostic tool of childhood obstructive sleep apnea (OSA). However, at-home respiratory polygraphy (HRP) remains the preferred alternative to polysomnography (PSG) in unattended settings. The aim of this study was twofold: (1) to design and assess a novel methodology for pediatric OSA screening based on automated analysis of at-home oxyhemoglobin saturation (SpO
), and (2) to compare its diagnostic performance with HRP.
SpO
recordings were parameterized by means of time, frequency, and conventional oximetric measures. Logistic regression models were optimized using genetic algorithms (GAs) for three cutoffs for OSA: 1, 3, and 5 events/h. The diagnostic performance of logistic regression models, manual obstructive apnea-hypopnea index (OAHI) from HRP, and the conventional oxygen desaturation index ≥ 3% (ODI3) were assessed.
For a cutoff of 1 event/h, the optimal logistic regression model significantly outperformed both conventional HRP-derived ODI3 and OAHI: 85.5% accuracy (HRP 74.6%; ODI3 65.9%) and 0.97 area under the receiver operating characteristics curve (AUC) (HRP 0.78; ODI3 0.75) were reached. For a cutoff of 3 events/h, the logistic regression model achieved 83.4% accuracy (HRP 85.0%; ODI3 74.5%) and 0.96 AUC (HRP 0.93; ODI3 0.85) whereas using a cutoff of 5 events/h, oximetry reached 82.8% accuracy (HRP 85.1%; ODI3 76.7) and 0.97 AUC (HRP 0.95; ODI3 0.84).
Automated analysis of at-home SpO
recordings provide accurate detection of children with high pretest probability of OSA. Thus, unsupervised nocturnal oximetry may enable a simple and effective alternative to HRP and PSG in unattended settings. |
---|---|
ISSN: | 1550-9389 1550-9397 |
DOI: | 10.5664/jcsm.6586 |