Is Attentional Resource Allocation Across Sensory Modalities Task-Dependent?

Human information processing is limited by attentional resources. That is, via attentional mechanisms, humans select a limited amount of sensory input to process while other sensory input is neglected. In multisensory research, a matter of ongoing debate is whether there are distinct pools of attent...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advances in cognitive psychology 2017, Vol.13 (1), p.83-96
Hauptverfasser: Wahn, Basil, König, Peter
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Human information processing is limited by attentional resources. That is, via attentional mechanisms, humans select a limited amount of sensory input to process while other sensory input is neglected. In multisensory research, a matter of ongoing debate is whether there are distinct pools of attentional resources for each sensory modality or whether attentional resources are shared across sensory modalities. Recent studies have suggested that attentional resource allocation across sensory modalities is in part task-dependent. That is, the recruitment of attentional resources across the sensory modalities depends on whether processing involves (e.g., the discrimination of stimulus attributes) or (e.g., the localization of stimuli). In the present paper, we review findings in multisensory research related to this view. For the visual and auditory sensory modalities, findings suggest that distinct resources are recruited when humans perform object-based attention tasks, whereas for the visual and tactile sensory modalities, partially shared resources are recruited. If object-based attention tasks are time-critical, shared resources are recruited across the sensory modalities. When humans perform an object-based attention task in combination with a spatial attention task, partly shared resources are recruited across the sensory modalities as well. Conversely, for spatial attention tasks, attentional processing does consistently involve shared attentional resources for the sensory modalities. Generally, findings suggest that the attentional system flexibly allocates attentional resources depending on task demands. We propose that such flexibility reflects a large-scale optimization strategy that minimizes the brain's costly resource expenditures and simultaneously maximizes capability to process currently relevant information.
ISSN:1895-1171
1895-1171
DOI:10.5709/acp-0209-2