Vitamin D and VDR in cancer cachexia and muscle regeneration

Low circulating levels of vitamin D were associated with decreased muscle strength and physical performance. Along this line, the present study was aimed to investigate: i) the therapeutic potential of vitamin D in cancer-induced muscle wasting; ii) the mechanisms by which vitamin D affects muscle p...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Oncotarget 2017-03, Vol.8 (13), p.21778-21793
Hauptverfasser: Camperi, Andrea, Pin, Fabrizio, Costamagna, Domiziana, Penna, Fabio, Menduina, Maria Lopez, Aversa, Zaira, Zimmers, Teresa, Verzaro, Roberto, Fittipaldi, Raffaella, Caretti, Giuseppina, Baccino, Francesco Maria, Muscaritoli, Maurizio, Costelli, Paola
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Low circulating levels of vitamin D were associated with decreased muscle strength and physical performance. Along this line, the present study was aimed to investigate: i) the therapeutic potential of vitamin D in cancer-induced muscle wasting; ii) the mechanisms by which vitamin D affects muscle phenotype in tumor-bearing animals.Rats bearing the AH130 hepatoma showed decreased circulating vitamin D compared to control rats, while muscle vitamin D receptor (VDR) mRNA was up-regulated. Both circulating vitamin D and muscle VDR expression increased after vitamin D administration, without exerting appreciable effects on body weight and muscle mass.The effects of vitamin D on muscle cells were studied in C2C12 myocytes. Vitamin D-treated myoblasts did not differentiate properly, fusing only partially and forming multinucleated structures with aberrant shape and low myosin heavy chain content. Vitamin D treatment resulted in VDR overexpression and myogenin down-regulation. Silencing VDR expression in C2C12 cultures abrogated the inhibition of differentiation exerted by vitamin D treatment.These data suggest that VDR overexpression in tumor-bearing animals contributes to muscle wasting by impairing muscle regenerative program. In this regard, attention should be paid when considering vitamin D supplementation to patients affected by chronic pathologies where muscle regeneration may be involved.
ISSN:1949-2553
1949-2553
DOI:10.18632/oncotarget.15583