Label-Free Dynamic Mass Redistribution Reveals Low-Density, Prosurvival α1B-Adrenergic Receptors in Human SW480 Colon Carcinoma Cells

Small molecules that target the adrenergic family of G protein–coupled receptors (GPCRs) show promising therapeutic efficacy for the treatment of various cancers. In this study, we report that human colon cancer cell line SW480 expresses low-density functional α1B-adrenergic receptors (ARs) as revea...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of pharmacology and experimental therapeutics 2017-05, Vol.361 (2), p.219-228
Hauptverfasser: Harris, Dorathy-Ann, Park, Ji-Min, Lee, Kyung-Soon, Xu, Cong, Stella, Nephi, Hague, Chris
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Small molecules that target the adrenergic family of G protein–coupled receptors (GPCRs) show promising therapeutic efficacy for the treatment of various cancers. In this study, we report that human colon cancer cell line SW480 expresses low-density functional α1B-adrenergic receptors (ARs) as revealed by label-free dynamic mass redistribution (DMR) signaling technology and confirmed by quantitative reverse-transcriptase polymerase chain reaction analysis. Remarkably, although endogenous α1B-ARs are not detectable via either [3H]-prazosin–binding analysis or phosphoinositol hydrolysis assays, their activation leads to robust DMR and enhanced cell viability. We provide pharmacological evidence that stimulation of α1B-ARs enhances SW480 cell viability without affecting proliferation, whereas stimulating β-ARs diminishes both viability and proliferation of SW480 cells. Our study illustrates the power of label-free DMR technology for identifying and characterizing low-density GPCRs in cells and suggests that drugs targeting both α1B- and β-ARs may represent valuable small-molecule therapeutics for the treatment of colon cancer.
ISSN:0022-3565
1521-0103
DOI:10.1124/jpet.116.237255