Protectin D1n-3 DPA and resolvin D5n-3 DPA are effectors of intestinal protection
The resolution of inflammation is an active process orchestrated by specialized proresolving lipid mediators (SPM) that limit the host response within the affected tissue; failure of effective resolution may lead to tissue injury. Because persistence of inflammatory signals is a main feature of chro...
Gespeichert in:
Veröffentlicht in: | Proceedings of the National Academy of Sciences - PNAS 2017-04, Vol.114 (15), p.3963-3968 |
---|---|
Hauptverfasser: | , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The resolution of inflammation is an active process orchestrated by specialized proresolving lipid mediators (SPM) that limit the host response within the affected tissue; failure of effective resolution may lead to tissue injury. Because persistence of inflammatory signals is a main feature of chronic inflammatory conditions, including inflammatory bowel diseases (IBDs), herein we investigate expression and functions of SPM in intestinal inflammation. Targeted liquid chromatography-tandem mass spectrometry-based metabololipidomics was used to identify SPMs from n-3 polyunsaturated fatty acids in human IBD colon biopsies, quantifying a significant up-regulation of the resolvin and protectin pathway compared with normal gut tissue. Systemic treatment with protectin (PD)1n-3 DPA or resolvin (Rv)D5n-3 DPA protected against colitis and intestinal ischemia/reperfusion-induced inflammation in mice. Inhibition of 15-lipoxygenase activity reduced PD1n-3 DPA and augmented intestinal inflammation in experimental colitis. Intravital microscopy of mouse mesenteric venules demonstrated that PD1n-3 DPA and RvD5n-3 DPA decreased the extent of leukocyte adhesion and emigration following ischemia-reperfusion. These data were translated by assessing human neutrophil–endothelial interactions under flow: PD1n-3 DPA and RvD5n-3 DPA reduced cell adhesion onto TNF-α–activated human endothelial monolayers. In conclusion, we propose that innovative therapies based on n-3 DPA-derived mediators could be developed to enable antiinflammatory and tissue protective effects in inflammatory pathologies of the gut. |
---|---|
ISSN: | 0027-8424 1091-6490 |
DOI: | 10.1073/pnas.1617290114 |