Novel surface-enhanced Raman scattering-based assays for ultra-sensitive detection of human pluripotent stem cells

Abstract Human pluripotent stem cells (hPSCs) are a promising cell source for regenerative medicine, but their derivatives need to be rigorously evaluated for residual stem cells to prevent teratoma formation. Here, we report the development of novel surface-enhanced Raman scattering (SERS)-based as...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biomaterials 2016-10, Vol.105, p.66-76
Hauptverfasser: Han, Jingjia, Qian, Ximei, Wu, Qingling, Jha, Rajneesh, Duan, Jinshuai, Yang, Zhou, Maher, Kevin O, Nie, Shuming, Xu, Chunhui
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Abstract Human pluripotent stem cells (hPSCs) are a promising cell source for regenerative medicine, but their derivatives need to be rigorously evaluated for residual stem cells to prevent teratoma formation. Here, we report the development of novel surface-enhanced Raman scattering (SERS)-based assays that can detect trace numbers of undifferentiated hPSCs in mixed cell populations in a highly specific, ultra-sensitive, and time-efficient manner. By targeting stem cell surface markers SSEA-5 and TRA-1-60 individually or simultaneously, these SERS assays were able to identify as few as 1 stem cell in 106  cells, a sensitivity (0.0001%) which was ∼2000 to 15,000-fold higher than that of flow cytometry assays. Using the SERS assay, we demonstrate that the aggregation of hPSC-based cardiomyocyte differentiation cultures into 3D spheres significantly reduced SSEA-5+ and TRA-1-60+ cells compared with parallel 2D cultures. Thus, SERS may provide a powerful new technology for quality control of hPSC-derived products for preclinical and clinical applications.
ISSN:0142-9612
1878-5905
DOI:10.1016/j.biomaterials.2016.07.033