Intrapituitary mechanisms underlying the control of fertility: key players in seasonal breeding
Recent studies have shown that, in conjunction with dynamic changes in the secretion of GnRH from the hypothalamus, paracrine interactions within the pituitary gland play an important role in the regulation of fertility during the annual reproductive cycle. Morphological studies have provided eviden...
Gespeichert in:
Veröffentlicht in: | Domestic animal endocrinology 2016-07, Vol.56 (Suppl), p.S191-S203 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Recent studies have shown that, in conjunction with dynamic changes in the secretion of GnRH from the hypothalamus, paracrine interactions within the pituitary gland play an important role in the regulation of fertility during the annual reproductive cycle. Morphological studies have provided evidence for close associations between gonadotropes and lactotropes and gap junction coupling between these cells in a variety of species. The physiological significance of this cellular interaction was supported by subsequent studies revealing the expression of prolactin receptors in both the pars distalis and pars tuberalis regions of the pituitary. This cellular interaction is critical for adequate gonadotropin output because, in the presence of dopamine, prolactin can negatively regulate the LH response to GnRH. Receptor signaling studies showed that signal convergence at the level of protein kinase C and phospholipase C within the gonadotrope underlies the resulting inhibition of LH secretion. Although this is a conserved mechanism present in all species studied so far, in seasonal breeders such as the sheep and the horse, this mechanism is regulated by photoperiod, as it is only apparent during the long days of spring and summer. At this time of year, the nonbreeding season of the sheep coincides with the breeding season of the horse, indicating that this inhibitory system plays different roles in short- and long-day breeders. Although in the sheep, it contributes to the complete suppression of the reproductive axis, in the horse, it is likely to participate in the fine-tuning of gonadotropin output by preventing gonadotrope desensitization. The photoperiodic regulation of this inhibitory mechanism appears to rely on alterations in the folliculostellate cell population. Indeed, electron microscopic studies have recently shown increased folliculostellate cell area together with upregulation of their adherens junctions during the spring and summer. The association between gonadotropes and lactotropes could also underlie an interaction between the gonadotropic and prolactin axes in the opposite direction. In support of this alternative, a series of studies have demonstrated that GnRH stimulates prolactin secretion in sheep through a mechanism that does not involve the mediatory actions of LH or FSH and that this stimulatory effect of GnRH on the prolactin axis is seasonally regulated. Collectively, these findings highlight the importance of intercellular communica |
---|---|
ISSN: | 0739-7240 1879-0054 |
DOI: | 10.1016/j.domaniend.2016.01.002 |