The Structure of an Archaeal β-Glucosaminidase Provides Insight into Glycoside Hydrolase Evolution

The archaeal exo-β-d-glucosaminidase (GlmA) is a dimeric enzyme that hydrolyzes chitosan oligosaccharides into monomer glucosamines. GlmA is a member of the glycosidase hydrolase (GH)-A superfamily-subfamily 35 and is a novel enzyme in terms of its primary structure. Here, we present the crystal str...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of biological chemistry 2017-03, Vol.292 (12), p.4996-5006
Hauptverfasser: Mine, Shouhei, Watanabe, Masahiro, Kamachi, Saori, Abe, Yoshito, Ueda, Tadashi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 5006
container_issue 12
container_start_page 4996
container_title The Journal of biological chemistry
container_volume 292
creator Mine, Shouhei
Watanabe, Masahiro
Kamachi, Saori
Abe, Yoshito
Ueda, Tadashi
description The archaeal exo-β-d-glucosaminidase (GlmA) is a dimeric enzyme that hydrolyzes chitosan oligosaccharides into monomer glucosamines. GlmA is a member of the glycosidase hydrolase (GH)-A superfamily-subfamily 35 and is a novel enzyme in terms of its primary structure. Here, we present the crystal structure of GlmA in complex with glucosamine at 1.27 Å resolution. The structure reveals that a monomeric form of GlmA shares structural homology with GH42 β-galactosidases, whereas most of the spatial positions of the active site residues are identical to those of GH35 β-galactosidases. We found that upon dimerization, the active site of GlmA changes shape, enhancing its ability to hydrolyze the smaller substrate in a manner similar to that of homotrimeric GH42 β-galactosidase. However, GlmA can differentiate glucosamine from galactose based on one charged residue while using the "evolutionary heritage residue" it shares with GH35 β-galactosidase. Our study suggests that GH35 and GH42 β-galactosidases evolved by exploiting the structural features of GlmA.
doi_str_mv 10.1074/jbc.M116.766535
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5377812</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1862760663</sourcerecordid><originalsourceid>FETCH-LOGICAL-p266t-dd6398b904c80e87e5e36058b7d3ff63e881b676f1a888cba8ecde9ca1f4d6f93</originalsourceid><addsrcrecordid>eNpVkNFKwzAUhoMobk6vvZNcetOZNG2a3ghjzG2gKDjBu5Imp1tG1sykHey1fBCfyYpT9NwcOP_H98NB6JKSISVZcrMu1fCBUj7MOE9ZeoT6lAgWsZS-HqM-ITGN8jgVPXQWwpp0k-T0FPViQRlJEtFHarEC_Nz4VjWtB-wqLGs88molQVr88R5NbatckBtTGy0D4CfvdkZDwPM6mOWqwaZuHJ7afUd1dzzba-_sFznZOds2xtXn6KSSNsDFYQ_Qy91kMZ5F94_T-Xh0H21jzptIa85yUeYkUYKAyCAFxkkqykyzquIMhKAlz3hFpRBClVKA0pArSatE8ypnA3T77d225Qa0grrx0hZbbzbS7wsnTfE_qc2qWLpdkbIsEzTuBNcHgXdvLYSm2JigwFpZg2tDQQWPM044Zx169bfrt-Tns-wTKmV_EA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1862760663</pqid></control><display><type>article</type><title>The Structure of an Archaeal β-Glucosaminidase Provides Insight into Glycoside Hydrolase Evolution</title><source>MEDLINE</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><creator>Mine, Shouhei ; Watanabe, Masahiro ; Kamachi, Saori ; Abe, Yoshito ; Ueda, Tadashi</creator><creatorcontrib>Mine, Shouhei ; Watanabe, Masahiro ; Kamachi, Saori ; Abe, Yoshito ; Ueda, Tadashi</creatorcontrib><description>The archaeal exo-β-d-glucosaminidase (GlmA) is a dimeric enzyme that hydrolyzes chitosan oligosaccharides into monomer glucosamines. GlmA is a member of the glycosidase hydrolase (GH)-A superfamily-subfamily 35 and is a novel enzyme in terms of its primary structure. Here, we present the crystal structure of GlmA in complex with glucosamine at 1.27 Å resolution. The structure reveals that a monomeric form of GlmA shares structural homology with GH42 β-galactosidases, whereas most of the spatial positions of the active site residues are identical to those of GH35 β-galactosidases. We found that upon dimerization, the active site of GlmA changes shape, enhancing its ability to hydrolyze the smaller substrate in a manner similar to that of homotrimeric GH42 β-galactosidase. However, GlmA can differentiate glucosamine from galactose based on one charged residue while using the "evolutionary heritage residue" it shares with GH35 β-galactosidase. Our study suggests that GH35 and GH42 β-galactosidases evolved by exploiting the structural features of GlmA.</description><identifier>ISSN: 0021-9258</identifier><identifier>EISSN: 1083-351X</identifier><identifier>DOI: 10.1074/jbc.M116.766535</identifier><identifier>PMID: 28130448</identifier><language>eng</language><publisher>United States: American Society for Biochemistry and Molecular Biology</publisher><subject>Amino Acid Sequence ; Catalytic Domain ; Crystallography, X-Ray ; Evolution, Molecular ; Glucosamine - metabolism ; Glycoside Hydrolases - chemistry ; Glycoside Hydrolases - metabolism ; Hexosaminidases - chemistry ; Hexosaminidases - metabolism ; Models, Molecular ; Protein Conformation ; Protein Multimerization ; Protein Structure and Folding ; Pyrococcus horikoshii - chemistry ; Pyrococcus horikoshii - enzymology ; Pyrococcus horikoshii - metabolism ; Substrate Specificity ; Thermococcus - chemistry ; Thermococcus - enzymology ; Thermococcus - metabolism</subject><ispartof>The Journal of biological chemistry, 2017-03, Vol.292 (12), p.4996-5006</ispartof><rights>2017 by The American Society for Biochemistry and Molecular Biology, Inc.</rights><rights>2017 by The American Society for Biochemistry and Molecular Biology, Inc. 2017 The American Society for Biochemistry and Molecular Biology, Inc.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5377812/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5377812/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,724,777,781,882,27905,27906,53772,53774</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28130448$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Mine, Shouhei</creatorcontrib><creatorcontrib>Watanabe, Masahiro</creatorcontrib><creatorcontrib>Kamachi, Saori</creatorcontrib><creatorcontrib>Abe, Yoshito</creatorcontrib><creatorcontrib>Ueda, Tadashi</creatorcontrib><title>The Structure of an Archaeal β-Glucosaminidase Provides Insight into Glycoside Hydrolase Evolution</title><title>The Journal of biological chemistry</title><addtitle>J Biol Chem</addtitle><description>The archaeal exo-β-d-glucosaminidase (GlmA) is a dimeric enzyme that hydrolyzes chitosan oligosaccharides into monomer glucosamines. GlmA is a member of the glycosidase hydrolase (GH)-A superfamily-subfamily 35 and is a novel enzyme in terms of its primary structure. Here, we present the crystal structure of GlmA in complex with glucosamine at 1.27 Å resolution. The structure reveals that a monomeric form of GlmA shares structural homology with GH42 β-galactosidases, whereas most of the spatial positions of the active site residues are identical to those of GH35 β-galactosidases. We found that upon dimerization, the active site of GlmA changes shape, enhancing its ability to hydrolyze the smaller substrate in a manner similar to that of homotrimeric GH42 β-galactosidase. However, GlmA can differentiate glucosamine from galactose based on one charged residue while using the "evolutionary heritage residue" it shares with GH35 β-galactosidase. Our study suggests that GH35 and GH42 β-galactosidases evolved by exploiting the structural features of GlmA.</description><subject>Amino Acid Sequence</subject><subject>Catalytic Domain</subject><subject>Crystallography, X-Ray</subject><subject>Evolution, Molecular</subject><subject>Glucosamine - metabolism</subject><subject>Glycoside Hydrolases - chemistry</subject><subject>Glycoside Hydrolases - metabolism</subject><subject>Hexosaminidases - chemistry</subject><subject>Hexosaminidases - metabolism</subject><subject>Models, Molecular</subject><subject>Protein Conformation</subject><subject>Protein Multimerization</subject><subject>Protein Structure and Folding</subject><subject>Pyrococcus horikoshii - chemistry</subject><subject>Pyrococcus horikoshii - enzymology</subject><subject>Pyrococcus horikoshii - metabolism</subject><subject>Substrate Specificity</subject><subject>Thermococcus - chemistry</subject><subject>Thermococcus - enzymology</subject><subject>Thermococcus - metabolism</subject><issn>0021-9258</issn><issn>1083-351X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpVkNFKwzAUhoMobk6vvZNcetOZNG2a3ghjzG2gKDjBu5Imp1tG1sykHey1fBCfyYpT9NwcOP_H98NB6JKSISVZcrMu1fCBUj7MOE9ZeoT6lAgWsZS-HqM-ITGN8jgVPXQWwpp0k-T0FPViQRlJEtFHarEC_Nz4VjWtB-wqLGs88molQVr88R5NbatckBtTGy0D4CfvdkZDwPM6mOWqwaZuHJ7afUd1dzzba-_sFznZOds2xtXn6KSSNsDFYQ_Qy91kMZ5F94_T-Xh0H21jzptIa85yUeYkUYKAyCAFxkkqykyzquIMhKAlz3hFpRBClVKA0pArSatE8ypnA3T77d225Qa0grrx0hZbbzbS7wsnTfE_qc2qWLpdkbIsEzTuBNcHgXdvLYSm2JigwFpZg2tDQQWPM044Zx169bfrt-Tns-wTKmV_EA</recordid><startdate>20170324</startdate><enddate>20170324</enddate><creator>Mine, Shouhei</creator><creator>Watanabe, Masahiro</creator><creator>Kamachi, Saori</creator><creator>Abe, Yoshito</creator><creator>Ueda, Tadashi</creator><general>American Society for Biochemistry and Molecular Biology</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20170324</creationdate><title>The Structure of an Archaeal β-Glucosaminidase Provides Insight into Glycoside Hydrolase Evolution</title><author>Mine, Shouhei ; Watanabe, Masahiro ; Kamachi, Saori ; Abe, Yoshito ; Ueda, Tadashi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p266t-dd6398b904c80e87e5e36058b7d3ff63e881b676f1a888cba8ecde9ca1f4d6f93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Amino Acid Sequence</topic><topic>Catalytic Domain</topic><topic>Crystallography, X-Ray</topic><topic>Evolution, Molecular</topic><topic>Glucosamine - metabolism</topic><topic>Glycoside Hydrolases - chemistry</topic><topic>Glycoside Hydrolases - metabolism</topic><topic>Hexosaminidases - chemistry</topic><topic>Hexosaminidases - metabolism</topic><topic>Models, Molecular</topic><topic>Protein Conformation</topic><topic>Protein Multimerization</topic><topic>Protein Structure and Folding</topic><topic>Pyrococcus horikoshii - chemistry</topic><topic>Pyrococcus horikoshii - enzymology</topic><topic>Pyrococcus horikoshii - metabolism</topic><topic>Substrate Specificity</topic><topic>Thermococcus - chemistry</topic><topic>Thermococcus - enzymology</topic><topic>Thermococcus - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mine, Shouhei</creatorcontrib><creatorcontrib>Watanabe, Masahiro</creatorcontrib><creatorcontrib>Kamachi, Saori</creatorcontrib><creatorcontrib>Abe, Yoshito</creatorcontrib><creatorcontrib>Ueda, Tadashi</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>The Journal of biological chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mine, Shouhei</au><au>Watanabe, Masahiro</au><au>Kamachi, Saori</au><au>Abe, Yoshito</au><au>Ueda, Tadashi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The Structure of an Archaeal β-Glucosaminidase Provides Insight into Glycoside Hydrolase Evolution</atitle><jtitle>The Journal of biological chemistry</jtitle><addtitle>J Biol Chem</addtitle><date>2017-03-24</date><risdate>2017</risdate><volume>292</volume><issue>12</issue><spage>4996</spage><epage>5006</epage><pages>4996-5006</pages><issn>0021-9258</issn><eissn>1083-351X</eissn><abstract>The archaeal exo-β-d-glucosaminidase (GlmA) is a dimeric enzyme that hydrolyzes chitosan oligosaccharides into monomer glucosamines. GlmA is a member of the glycosidase hydrolase (GH)-A superfamily-subfamily 35 and is a novel enzyme in terms of its primary structure. Here, we present the crystal structure of GlmA in complex with glucosamine at 1.27 Å resolution. The structure reveals that a monomeric form of GlmA shares structural homology with GH42 β-galactosidases, whereas most of the spatial positions of the active site residues are identical to those of GH35 β-galactosidases. We found that upon dimerization, the active site of GlmA changes shape, enhancing its ability to hydrolyze the smaller substrate in a manner similar to that of homotrimeric GH42 β-galactosidase. However, GlmA can differentiate glucosamine from galactose based on one charged residue while using the "evolutionary heritage residue" it shares with GH35 β-galactosidase. Our study suggests that GH35 and GH42 β-galactosidases evolved by exploiting the structural features of GlmA.</abstract><cop>United States</cop><pub>American Society for Biochemistry and Molecular Biology</pub><pmid>28130448</pmid><doi>10.1074/jbc.M116.766535</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0021-9258
ispartof The Journal of biological chemistry, 2017-03, Vol.292 (12), p.4996-5006
issn 0021-9258
1083-351X
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5377812
source MEDLINE; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central; Alma/SFX Local Collection
subjects Amino Acid Sequence
Catalytic Domain
Crystallography, X-Ray
Evolution, Molecular
Glucosamine - metabolism
Glycoside Hydrolases - chemistry
Glycoside Hydrolases - metabolism
Hexosaminidases - chemistry
Hexosaminidases - metabolism
Models, Molecular
Protein Conformation
Protein Multimerization
Protein Structure and Folding
Pyrococcus horikoshii - chemistry
Pyrococcus horikoshii - enzymology
Pyrococcus horikoshii - metabolism
Substrate Specificity
Thermococcus - chemistry
Thermococcus - enzymology
Thermococcus - metabolism
title The Structure of an Archaeal β-Glucosaminidase Provides Insight into Glycoside Hydrolase Evolution
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T03%3A37%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20Structure%20of%20an%20Archaeal%20%CE%B2-Glucosaminidase%20Provides%20Insight%20into%20Glycoside%20Hydrolase%20Evolution&rft.jtitle=The%20Journal%20of%20biological%20chemistry&rft.au=Mine,%20Shouhei&rft.date=2017-03-24&rft.volume=292&rft.issue=12&rft.spage=4996&rft.epage=5006&rft.pages=4996-5006&rft.issn=0021-9258&rft.eissn=1083-351X&rft_id=info:doi/10.1074/jbc.M116.766535&rft_dat=%3Cproquest_pubme%3E1862760663%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1862760663&rft_id=info:pmid/28130448&rfr_iscdi=true