The Structure of an Archaeal β-Glucosaminidase Provides Insight into Glycoside Hydrolase Evolution

The archaeal exo-β-d-glucosaminidase (GlmA) is a dimeric enzyme that hydrolyzes chitosan oligosaccharides into monomer glucosamines. GlmA is a member of the glycosidase hydrolase (GH)-A superfamily-subfamily 35 and is a novel enzyme in terms of its primary structure. Here, we present the crystal str...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of biological chemistry 2017-03, Vol.292 (12), p.4996-5006
Hauptverfasser: Mine, Shouhei, Watanabe, Masahiro, Kamachi, Saori, Abe, Yoshito, Ueda, Tadashi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The archaeal exo-β-d-glucosaminidase (GlmA) is a dimeric enzyme that hydrolyzes chitosan oligosaccharides into monomer glucosamines. GlmA is a member of the glycosidase hydrolase (GH)-A superfamily-subfamily 35 and is a novel enzyme in terms of its primary structure. Here, we present the crystal structure of GlmA in complex with glucosamine at 1.27 Å resolution. The structure reveals that a monomeric form of GlmA shares structural homology with GH42 β-galactosidases, whereas most of the spatial positions of the active site residues are identical to those of GH35 β-galactosidases. We found that upon dimerization, the active site of GlmA changes shape, enhancing its ability to hydrolyze the smaller substrate in a manner similar to that of homotrimeric GH42 β-galactosidase. However, GlmA can differentiate glucosamine from galactose based on one charged residue while using the "evolutionary heritage residue" it shares with GH35 β-galactosidase. Our study suggests that GH35 and GH42 β-galactosidases evolved by exploiting the structural features of GlmA.
ISSN:0021-9258
1083-351X
DOI:10.1074/jbc.M116.766535