CancerLocator: non-invasive cancer diagnosis and tissue-of-origin prediction using methylation profiles of cell-free DNA

We propose a probabilistic method, CancerLocator, which exploits the diagnostic potential of cell-free DNA by determining not only the presence but also the location of tumors. CancerLocator simultaneously infers the proportions and the tissue-of-origin of tumor-derived cell-free DNA in a blood samp...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Genome Biology 2017-03, Vol.18 (1), p.53-53, Article 53
Hauptverfasser: Kang, Shuli, Li, Qingjiao, Chen, Quan, Zhou, Yonggang, Park, Stacy, Lee, Gina, Grimes, Brandon, Krysan, Kostyantyn, Yu, Min, Wang, Wei, Alber, Frank, Sun, Fengzhu, Dubinett, Steven M, Li, Wenyuan, Zhou, Xianghong Jasmine
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We propose a probabilistic method, CancerLocator, which exploits the diagnostic potential of cell-free DNA by determining not only the presence but also the location of tumors. CancerLocator simultaneously infers the proportions and the tissue-of-origin of tumor-derived cell-free DNA in a blood sample using genome-wide DNA methylation data. CancerLocator outperforms two established multi-class classification methods on simulations and real data, even with the low proportion of tumor-derived DNA in the cell-free DNA scenarios. CancerLocator also achieves promising results on patient plasma samples with low DNA methylation sequencing coverage.
ISSN:1474-760X
1474-7596
1474-760X
DOI:10.1186/s13059-017-1191-5