Proliferation and differentiation of adipose tissue in prolonged lean and obese critically ill patients
Background In prolonged non-obese critically ill patients, preservation of adipose tissue is prioritized over that of the skeletal muscle and coincides with increased adipogenesis. However, we recently demonstrated that in obese critically ill mice, this priority was switched. In the obese, the use...
Gespeichert in:
Veröffentlicht in: | Intensive care medicine experimental 2017-12, Vol.5 (1), p.16-16, Article 16 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Background
In prolonged non-obese critically ill patients, preservation of adipose tissue is prioritized over that of the skeletal muscle and coincides with increased adipogenesis. However, we recently demonstrated that in obese critically ill mice, this priority was switched. In the obese, the use of abundantly available adipose tissue-derived energy substrates was preferred and counteracted muscle wasting. These observations suggest that different processes are ongoing in adipose tissue of lean vs. overweight/obese critically ill patients.
Methods
We hypothesize that to preserve adipose tissue mass during critical illness, adipogenesis is increased in prolonged lean critically ill patients, but not in overweight/obese critically ill patients, who enter the ICU with excess adipose tissue. To test this, we studied markers of adipogenesis in subcutaneous and visceral biopsies of matched lean (
n
= 24) and overweight/obese (
n
= 24) prolonged critically ill patients. Secondly, to further unravel the underlying mechanism of critical illness-induced adipogenesis, local production of eicosanoid PPARγ agonists was explored, as well as the adipogenic potential of serum from matched lean (
n
= 20) and overweight/obese (
n
= 20) critically ill patients.
Results
The number of small adipocytes, PPARγ protein, and
CEBPB
expression were equally upregulated (
p
≤ 0.05) in subcutaneous and visceral adipose tissue biopsies of lean and overweight/obese prolonged critically ill patients. Gene expression of key enzymes involved in eicosanoid production was reduced (
COX1
,
HPGDS
,
LPGDS
,
ALOX15
, all
p
≤ 0.05) or unaltered (
COX2
,
ALOX5
) during critical illness, irrespective of obesity. Gene expression of
PLA2G2A
and
ALOX15B
was upregulated in lean and overweight/obese patients (
p
≤ 0.05), whereas their end products, the PPARγ-activating metabolites 15s-HETE and 9-HODE, were not increased in the adipose tissue. In vitro, serum of lean and overweight/obese prolonged critically ill patients equally stimulated adipocyte proliferation (
p
≤ 0.05) and differentiation (lipid accumulation,
DLK1
, and
CEBPB
expression,
p
≤ 0.05).
Conclusions
Contrary to what was hypothesized, adipogenesis increased independently of initial BMI in prolonged critically ill patients. Not the production of local eicosanoid PPARγ agonists but circulating adipogenic factors seem to be involved in critical illness-induced adipogenesis. Importantly, our findings suggest that abundantly availabl |
---|---|
ISSN: | 2197-425X 2197-425X |
DOI: | 10.1186/s40635-017-0128-3 |