High Photoresponsivity Ge-dot PhotoMOSFETs for Low-power Monolithically-Integrated Si Optical Interconnects
We report the demonstration of high-photoresponsivity Ge-dot photoMOSFETs in a standard MOS configuration for the detection of 850–1550 nm illumination. Each device has a self-organized, gate-stacking heterostructure of SiO 2 /Ge-dot/SiO 2 /SiGe-channel which is simultaneously fabricated in a single...
Gespeichert in:
Veröffentlicht in: | Scientific reports 2017-03, Vol.7 (1), p.44402-44402, Article 44402 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We report the demonstration of high-photoresponsivity Ge-dot photoMOSFETs in a standard MOS configuration for the detection of 850–1550 nm illumination. Each device has a self-organized, gate-stacking heterostructure of SiO
2
/Ge-dot/SiO
2
/SiGe-channel which is simultaneously fabricated in a single oxidation step. Superior control of the geometrical size and chemical composition for our Ge nanodots/SiO
2
/Si
1-
x
Ge
x
-shell MOS structure enables the practically-achievable, gate-stacking design for our Ge-dot photoMOSFETs. Both the gate oxide thickness and the diameter of the Ge dots are controllable. Large photocurrent enhancement was achieved for our Ge-dot photoMOSFETs when electrically-biased at ON- and OFF-states based on the Ge dot mediating photovoltaic and photoconductive effects, respectively. Both photoelectric conversion efficiency and response speed are significantly improved by reducing the gate-oxide thickness from 38.5 nm to 3.5 nm, and by decreasing Ge-dot size from 90 nm to 50 nm for a given areal density of Ge dots. Photoresponsivity (
) values as high as 1.2 × 10
4
A/W and 300 A/W are measured for 10 nW illumination at 850 nm and 1550 nm, respectively. A response time of 0.48 ns and a 3 dB-frequency of 2 GHz were achieved for 50 nm-Ge-dot photoMOSFETs with channel lengths of 3 μm under pulsed 850 nm illumination. |
---|---|
ISSN: | 2045-2322 2045-2322 |
DOI: | 10.1038/srep44402 |