Molecular mechanism of voltage sensor movements in a potassium channel
Voltage‐gated potassium channels are six‐transmembrane (S1–S6) proteins that form a central pore domain (4 × S5–S6) surrounded by four voltage sensor domains (S1–S4), which detect changes in membrane voltage and control pore opening. Upon depolarization, the S4 segments move outward carrying charged...
Gespeichert in:
Veröffentlicht in: | The EMBO journal 2004-12, Vol.23 (24), p.4717-4726 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Voltage‐gated potassium channels are six‐transmembrane (S1–S6) proteins that form a central pore domain (4 × S5–S6) surrounded by four voltage sensor domains (S1–S4), which detect changes in membrane voltage and control pore opening. Upon depolarization, the S4 segments move outward carrying charged residues across the membrane field, thereby leading to the opening of the pore. The mechanism of S4 motion is controversial. We have investigated how S4 moves relative to the pore domain in the prototypical Shaker potassium channel. We introduced pairs of cysteines, one in S4 and the other in S5, and examined proximity changes between each pair of cysteines during activation, using Cd
2+
and copper‐phenanthroline, which crosslink the cysteines with metal and disulphide bridges, respectively. Modelling of the results suggests a novel mechanism: in the resting state, the top of the S3b–S4 voltage sensor paddle lies close to the top of S5 of the adjacent subunit, but moves towards the top of S5 of its own subunit during depolarization—this motion is accompanied by a reorientation of S4 charges to the extracellular phase. |
---|---|
ISSN: | 0261-4189 1460-2075 |
DOI: | 10.1038/sj.emboj.7600484 |