Microfluidic droplet platform for ultrahigh-throughput single-cell screening of biodiversity

Ultrahigh-throughput screening (uHTS) techniques can identify unique functionality from millions of variants. To mimic the natural selection mechanisms that occur by compartmentalization in vivo, we developed a technique based on single-cell encapsulation in droplets of a monodisperse microfluidic d...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the National Academy of Sciences - PNAS 2017-03, Vol.114 (10), p.2550-2555
Hauptverfasser: Terekhov, Stanislav S., Smirnov, Ivan V., Stepanova, Anastasiya V., Bobik, Tatyana V., Mokrushina, Yuliana A., Ponomarenko, Natalia A., Belogurov, Alexey A., Rubtsova, Maria P., Kartseva, Olga V., Gomzikova, Marina O., Moskovtsev, Alexey A., Bukatin, Anton S., Dubina, Michael V., Kostryukova, Elena S., Babenko, Vladislav V., Vakhitova, Maria T., Manolov, Alexander I., Malakhova, Maja V., Kornienko, Maria A., Tyakht, Alexander V., Vanyushkina, Anna A., Ilina, Elena N., Masson, Patrick, Gabibov, Alexander G., Altman, Sidney
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Ultrahigh-throughput screening (uHTS) techniques can identify unique functionality from millions of variants. To mimic the natural selection mechanisms that occur by compartmentalization in vivo, we developed a technique based on single-cell encapsulation in droplets of a monodisperse microfluidic double water-in-oil-in-water emulsion (MDE). Biocompatible MDE enables in-droplet cultivation of different living species. The combination of droplet-generating machinery with FACS followed by next-generation sequencing and liquid chromatography-mass spectrometry analysis of the secretomes of encapsulated organisms yielded detailed genotype/phenotype descriptions. This platform was probed with uHTS for biocatalysts anchored to yeast with enrichment close to the theoretically calculated limit and cell-to-cell interactions. MDE–FACS allowed the identification of human butyrylcholinesterase mutants that undergo self-reactivation after inhibition by the organophosphorus agent paraoxon. The versatility of the platform allowed the identification of bacteria, including slow-growing oral microbiota species that suppress the growth of a common pathogen, Staphylococcus aureus, and predicted which genera were associated with inhibitory activity.
ISSN:0027-8424
1091-6490
DOI:10.1073/pnas.1621226114