Utilization of leukapheresis and CD4 positive selection in Treg isolation and the ex-vivo expansion for a clinical application in transplantation and autoimmune disorders
Adoptive transfer of T regulatory cells (Tregs) is of great interest as a novel immunosuppressive therapy in autoimmune disorders and transplantation. Obtaining a sufficient number of stable and functional Tregs generated according to current Good Manufacturing Practice (cGMP) requirements has been...
Gespeichert in:
Veröffentlicht in: | Oncotarget 2016-11, Vol.7 (48), p.79474-79484 |
---|---|
Hauptverfasser: | , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Adoptive transfer of T regulatory cells (Tregs) is of great interest as a novel immunosuppressive therapy in autoimmune disorders and transplantation. Obtaining a sufficient number of stable and functional Tregs generated according to current Good Manufacturing Practice (cGMP) requirements has been a major challenge in introducing Tregs as a clinical therapy. Here, we present a protocol involving leukapheresis and CD4+ cell pre-enrichment prior to Treg sorting, which allows a sufficient number of Tregs for a clinical application to be obtained. With this method there is a decreased requirement for ex- vivo expansion. The protocol was validated in cGMP conditions. Our final Treg product passed all release criteria set for clinical applications. Moreover, during expansion Tregs presented their stable phenotype: percentage of CD4+CD25hiCD127- and CD4+FoxP3+ Tregs was > 95% and > 80%, respectively, and Tregs maintained proper immune suppressive function in vitro. Our results suggest that utilization of leukapheresis and CD4 positive selection during Treg isolation improves the likelihood of obtaining a sufficient number of high quality Treg cells during subsequent ex-vivo expansion and they can be applied clinically. |
---|---|
ISSN: | 1949-2553 1949-2553 |
DOI: | 10.18632/oncotarget.13101 |