Revealing new insights into different phosphorus-starving responses between two maize (Zea mays) inbred lines by transcriptomic and proteomic studies
Phosphorus (P) is an essential plant nutrient, and deficiency of P is one of the most important factors restricting maize yield. Therefore, it is necessary to develop a more efficient program of P fertilization and breeding crop varieties with enhanced Pi uptake and use efficiency, which required un...
Gespeichert in:
Veröffentlicht in: | Scientific reports 2017-03, Vol.7 (1), p.44294-44294, Article 44294 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Phosphorus (P) is an essential plant nutrient, and deficiency of P is one of the most important factors restricting maize yield. Therefore, it is necessary to develop a more efficient program of P fertilization and breeding crop varieties with enhanced Pi uptake and use efficiency, which required understanding how plants respond to Pi starvation. To understand how maize plants adapt to P-deficiency stress, we screened 116 inbred lines in the field and identified two lines, DSY2 and DSY79 that were extreme low-P resistant and sensitive, respectively. We further conducted physiological, transcriptomic, and proteomic studies using the roots of DSY2 and DSY79 under normal or low-P conditions. The results showed that the low-P resistant line, DSY2 had larger root length, surface area and volume, higher root vitality, as well as acid phosphatase activity as compared with the low-P sensitive line, DSY79 under the low-P condition. The transcriptomic and proteomic results suggest that dramatic more genes were induced in DSY2, including the plant hormone signaling, acid phosphatase, and metabolite genes, as compared with DSY79 after being challenged by low-P stress. The new insights generated in this study will be useful toward the improvement of P-utilize efficiency in maize. |
---|---|
ISSN: | 2045-2322 2045-2322 |
DOI: | 10.1038/srep44294 |