Fenofibrate inhibits atrial metabolic remodelling in atrial fibrillation through PPAR‐α/sirtuin 1/PGC‐1α pathway
Background and Purpose Atrial metabolic remodelling is critical for the process of atrial fibrillation (AF). The PPAR‐α/sirtuin 1 /PPAR co‐activator α (PGC‐1α) pathway plays an important role in maintaining energy metabolism. However, the effect of the PPAR‐α agonist fenofibrate on AF is unclear. Th...
Gespeichert in:
Veröffentlicht in: | British journal of pharmacology 2016-03, Vol.173 (6), p.1095-1109 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Background and Purpose
Atrial metabolic remodelling is critical for the process of atrial fibrillation (AF). The PPAR‐α/sirtuin 1 /PPAR co‐activator α (PGC‐1α) pathway plays an important role in maintaining energy metabolism. However, the effect of the PPAR‐α agonist fenofibrate on AF is unclear. Therefore, the aim of this study was to determine the effect of fenofibrate on atrial metabolic remodelling in AF and explore its possible mechanisms of action.
Experimental Approach
The expression of metabolic proteins was examined in the left atria of AF patients. Thirty‐two rabbits were divided into sham, AF (pacing with 600 beats·min−1 for 1 week), fenofibrate treated (pretreated with fenofibrate before pacing) and fenofibrate alone treated (for 2 weeks) groups. HL‐1 cells were subjected to rapid pacing in the presence or absence of fenofibrate, the PPAR‐α antagonist GW6471 or sirtuin 1‐specific inhibitor EX527. Metabolic factors, circulating biochemical metabolites, atrial electrophysiology, adenine nucleotide levels and accumulation of glycogen and lipid droplets were assessed.
Key Results
The PPAR‐α/sirtuin 1/PGC‐1α pathway was significantly inhibited in AF patients and in the rabbit/HL‐1 cell models, resulting in a reduction of key downstream metabolic factors; this effect was significantly restored by fenofibrate. Fenofibrate prevented the alterations in circulating biochemical metabolites, reduced the level of adenine nucleotides and accumulation of glycogen and lipid droplets, reversed the shortened atrial effective refractory period and increased risk of AF.
Conclusion and Implications
Fenofibrate inhibited atrial metabolic remodelling in AF by regulating the PPAR‐α/sirtuin 1/PGC‐1α pathway. The present study may provide a novel therapeutic strategy for AF. |
---|---|
ISSN: | 0007-1188 1476-5381 |
DOI: | 10.1111/bph.13438 |