Subcutaneous liraglutide ameliorates methylglyoxal-induced Alzheimer-like tau pathology and cognitive impairment by modulating tau hyperphosphorylation and glycogen synthase kinase-3β
Memory deterioration and synapse damage with accumulation of β-amyloid and hyperphosphorylated tau are hallmark lesions of Alzheimer's disease (AD). Methylglyoxal (MG), a key intermediate of glucose metabolism, is elevated in AD brains and modifies Aβ , increasing misfolding and leading to the...
Gespeichert in:
Veröffentlicht in: | American journal of translational research 2017-01, Vol.9 (2), p.247-260 |
---|---|
Hauptverfasser: | , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Memory deterioration and synapse damage with accumulation of β-amyloid and hyperphosphorylated tau are hallmark lesions of Alzheimer's disease (AD). Methylglyoxal (MG), a key intermediate of glucose metabolism, is elevated in AD brains and modifies Aβ
, increasing misfolding and leading to the accumulation of senile plaques. Liraglutide, an analog of glucagon-like peptide-1 (GLP-1), is neurotrophic and neuroprotective. However, whether liraglutide can protect against AD-like memory-related deficits and tau hyperphosphorylation caused by MG in vivo is not known. Here, we report that MG induces tau hyperphosphorylation and causes ultrastructural hippocampal damage and cognitive impairment in C57BL/6J mice. Liraglutide reduced these effects via activation of the protein kinase B and glycogen synthase kinase-3β pathways. Our data reveal that liraglutide may alleviate AD-like cognitive impairment by decreasing the phosphorylation of tau. |
---|---|
ISSN: | 1943-8141 1943-8141 |