Loss of hypothalamic corticotropin-releasing hormone markedly reduces anxiety behaviors in mice
A long-standing paradigm posits that hypothalamic corticotropin-releasing hormone (CRH) regulates neuroendocrine functions such as adrenal glucocorticoid release, whereas extra-hypothalamic CRH has a key role in stressor-triggered behaviors. Here we report that hypothalamus-specific Crh knockout mic...
Gespeichert in:
Veröffentlicht in: | Molecular psychiatry 2017-05, Vol.22 (5), p.733-744 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | A long-standing paradigm posits that hypothalamic corticotropin-releasing hormone (CRH) regulates neuroendocrine functions such as adrenal glucocorticoid release, whereas extra-hypothalamic CRH has a key role in stressor-triggered behaviors. Here we report that hypothalamus-specific
Crh
knockout mice (
Sim1CrhKO
mice, created by crossing
Crh
flox with
Sim1
Cre mice) have absent Crh mRNA and peptide mainly in the paraventricular nucleus of the hypothalamus (PVH) but preserved Crh expression in other brain regions including amygdala and cerebral cortex. As expected,
Sim1Crh
KO mice exhibit adrenal atrophy as well as decreased basal, diurnal and stressor-stimulated plasma corticosterone secretion and basal plasma adrenocorticotropic hormone, but surprisingly, have a profound anxiolytic phenotype when evaluated using multiple stressors including open-field, elevated plus maze, holeboard, light–dark box and novel object recognition task. Restoring plasma corticosterone did not reverse the anxiolytic phenotype of
Sim1CrhKO
mice.
Crh
-Cre driver mice revealed that PVHCrh fibers project abundantly to cingulate cortex and the nucleus accumbens shell, and moderately to medial amygdala, locus coeruleus and solitary tract, consistent with the existence of PVHCrh-dependent behavioral pathways. Although previous, nonselective attenuation of CRH production or action, genetically in mice and pharmacologically in humans, respectively, has not produced the anticipated anxiolytic effects, our data show that targeted interference specifically with hypothalamic Crh expression results in anxiolysis. Our data identify neurons that express both
Sim1
and
Crh
as a cellular entry point into the study of CRH-mediated, anxiety-like behaviors and their therapeutic attenuation. |
---|---|
ISSN: | 1359-4184 1476-5578 |
DOI: | 10.1038/mp.2016.136 |