Visualization of neuritic plaques in Alzheimer’s disease by polarization-sensitive optical coherence microscopy

One major hallmark of Alzheimer’s disease (AD) and cerebral amyloid angiopathy (CAA) is the deposition of extracellular senile plaques and vessel wall deposits composed of amyloid-beta (A β ). In AD, degeneration of neurons is preceded by the formation of A β plaques, which show different morphologi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Scientific reports 2017-03, Vol.7 (1), p.43477-43477, Article 43477
Hauptverfasser: Baumann, Bernhard, Woehrer, Adelheid, Ricken, Gerda, Augustin, Marco, Mitter, Christian, Pircher, Michael, Kovacs, Gabor G., Hitzenberger, Christoph K.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:One major hallmark of Alzheimer’s disease (AD) and cerebral amyloid angiopathy (CAA) is the deposition of extracellular senile plaques and vessel wall deposits composed of amyloid-beta (A β ). In AD, degeneration of neurons is preceded by the formation of A β plaques, which show different morphological forms. Most of them are birefringent owing to the parallel arrangement of amyloid fibrils. Here, we present polarization sensitive optical coherence microscopy (PS-OCM) for imaging mature neuritic A β plaques based on their birefringent properties. Formalin-fixed, post-mortem brain samples of advanced stage AD patients were investigated. In several cortical brain regions, neuritic A β plaques were successfully visualized in tomographic and three-dimensional (3D) images. Cortical grey matter appeared polarization preserving, whereas neuritic plaques caused increased phase retardation. Consistent with the results from PS-OCM imaging, the 3D structure of senile A β plaques was computationally modelled for different illumination settings and plaque sizes. Furthermore, the birefringent properties of cortical and meningeal vessel walls in CAA were investigated in selected samples. Significantly increased birefringence was found in smaller vessels. Overall, these results provide evidence that PS-OCM is able to assess amyloidosis based on intrinsic birefringent properties.
ISSN:2045-2322
2045-2322
DOI:10.1038/srep43477