Preparation and Characterization of Three Tilmicosin-loaded Lipid Nanoparticles: Physicochemical Properties and in-vitro Antibacterial Activities

Tilmicosin (TLM) is an important antibiotic in veterinary medicine with low bioavailability and safety. This study aimed to formulate and evaluate physicochemical properties, storage stability after lyophilization, and antibacterial activity of three TLM-loaded lipid nanoparticles (TLM-LNPs) includi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Iranian journal of pharmaceutical research : IJPR 2016-01, Vol.15 (4), p.663-676
Hauptverfasser: Al-Qushawi, Alwan, Rassouli, Ali, Atyabi, Fatemeh, Peighambari, Seyed Mostafa, Esfandyari-Manesh, Mehdi, Shams, Gholam Reza, Yazdani, Azam
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Tilmicosin (TLM) is an important antibiotic in veterinary medicine with low bioavailability and safety. This study aimed to formulate and evaluate physicochemical properties, storage stability after lyophilization, and antibacterial activity of three TLM-loaded lipid nanoparticles (TLM-LNPs) including solid lipid nanoparticles (SLNs), nanostructured lipid carriers (NLCs), and lipid-core nanocapsules (LNCs). Physicochemical parameters such as particle size-mean diameter, polydispersity index, zeta potential, drug encapsulation efficiency (EE), loading capacity, and morphology of the formulations were evaluated and the effects of various cryoprotectants during lyophilization and storage for 8 weeks were also studied. The profiles of TLM release and the antibacterial activities of these TLM-LNPs suspensions (against and ) were tested in comparison with their corresponding powders. TLM-LNPs suspensions were in nano-scale range with mean diameters of 186.3 ± 1.5, 149.6 ± 3.0, and 85.0 ± 1.0nm, and also EE, 69.1, 86.3, and 94.3% for TLM- SLNs, TLM-NLCs, and TLM- LNCs respectively. TLM-LNCs gave the best results with significantly low particle size and high EE (p
ISSN:1735-0328
1726-6890