Gsk3 is a metabolic checkpoint regulator in B cells

Mature B cells remain in a quiescent state until activated. Rickert and colleagues identify a prominent role for the kinase Gsk3 in resting naive B cells and in activated germinal center B cells that restrains the production of Myc and reactive oxygen species and prevents metabolic collapse. B cells...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature immunology 2017-03, Vol.18 (3), p.303-312
Hauptverfasser: Jellusova, Julia, Cato, Matthew H, Apgar, John R, Ramezani-Rad, Parham, Leung, Charlotte R, Chen, Cindi, Richardson, Adam D, Conner, Elaine M, Benschop, Robert J, Woodgett, James R, Rickert, Robert C
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Mature B cells remain in a quiescent state until activated. Rickert and colleagues identify a prominent role for the kinase Gsk3 in resting naive B cells and in activated germinal center B cells that restrains the production of Myc and reactive oxygen species and prevents metabolic collapse. B cells predominate in a quiescent state until an antigen is encountered, which results in rapid growth, proliferation and differentiation of the B cells. These distinct cell states are probably accompanied by differing metabolic needs, yet little is known about the metabolic control of B cell fate. Here we show that glycogen synthase kinase 3 (Gsk3) is a metabolic sensor that promotes the survival of naive recirculating B cells by restricting cell mass accumulation. In antigen-driven responses, Gsk3 was selectively required for regulation of B cell size, mitochondrial biogenesis, glycolysis and production of reactive oxygen species (ROS), in a manner mediated by the co-stimulatory receptor CD40. Gsk3 was required to prevent metabolic collapse and ROS-induced apoptosis after glucose became limiting, functioning in part by repressing growth dependent on the myelocytomatosis oncoprotein c-Myc. Notably, we found that Gsk3 was required for the generation and maintenance of germinal center B cells, which require high glycolytic activity to support growth and proliferation in a hypoxic microenvironment.
ISSN:1529-2908
1529-2916
DOI:10.1038/ni.3664