Multi-OMIC profiling of survival and metabolic signaling networks in cells subjected to photodynamic therapy

Photodynamic therapy (PDT) is an established palliative treatment for perihilar cholangiocarcinoma that is clinically promising. However, tumors tend to regrow after PDT, which may result from the PDT-induced activation of survival pathways in sublethally afflicted tumor cells. In this study, tumor-...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Cellular and molecular life sciences : CMLS 2017-03, Vol.74 (6), p.1133-1151
Hauptverfasser: Weijer, Ruud, Clavier, Séverine, Zaal, Esther A., Pijls, Maud M. E., van Kooten, Robert T., Vermaas, Klaas, Leen, René, Jongejan, Aldo, Moerland, Perry D., van Kampen, Antoine H. C., van Kuilenburg, André B. P., Berkers, Celia R., Lemeer, Simone, Heger, Michal
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Photodynamic therapy (PDT) is an established palliative treatment for perihilar cholangiocarcinoma that is clinically promising. However, tumors tend to regrow after PDT, which may result from the PDT-induced activation of survival pathways in sublethally afflicted tumor cells. In this study, tumor-comprising cells (i.e., vascular endothelial cells, macrophages, perihilar cholangiocarcinoma cells, and EGFR-overexpressing epidermoid cancer cells) were treated with the photosensitizer zinc phthalocyanine that was encapsulated in cationic liposomes (ZPCLs). The post-PDT survival pathways and metabolism were studied following sublethal (LC 50 ) and supralethal (LC 90 ) PDT. Sublethal PDT induced survival signaling in perihilar cholangiocarcinoma (SK-ChA-1) cells via mainly HIF-1-, NF-кB-, AP-1-, and heat shock factor (HSF)-mediated pathways. In contrast, supralethal PDT damage was associated with a dampened survival response. PDT-subjected SK-ChA-1 cells downregulated proteins associated with EGFR signaling, particularly at LC 90 . PDT also affected various components of glycolysis and the tricarboxylic acid cycle as well as metabolites involved in redox signaling. In conclusion, sublethal PDT activates multiple pathways in tumor-associated cell types that transcriptionally regulate cell survival, proliferation, energy metabolism, detoxification, inflammation/angiogenesis, and metastasis. Accordingly, tumor cells sublethally afflicted by PDT are a major therapeutic culprit. Our multi-omic analysis further unveiled multiple druggable targets for pharmacological co-intervention.
ISSN:1420-682X
1420-9071
DOI:10.1007/s00018-016-2401-0