Hypertrophy Changes 3D Shape of hiPSC-Cardiomyocytes: Implications for Cellular Maturation in Regenerative Medicine
Advances in the use of human induced pluripotent stem cell (hiPSC)-derived cardiomyocytes for heart regeneration and in vitro disease models demand a greater understanding of how these cells grow and mature in 3-dimensional space. In this study, we developed an analysis methodology of single cardiom...
Gespeichert in:
Veröffentlicht in: | Cellular and molecular bioengineering 2017-02, Vol.10 (1), p.54-62 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Advances in the use of human induced pluripotent stem cell (hiPSC)-derived cardiomyocytes for heart regeneration and
in vitro
disease models demand a greater understanding of how these cells grow and mature in 3-dimensional space. In this study, we developed an analysis methodology of single cardiomyocytes plated on 2D surfaces to assess their 3D myofilament volume and its z-height distribution, or shape, upon hypertrophic stimulation
via
phenylephrine (PE) treatment or long-term culture (“aging”). Cardiomyocytes were fixed and labeled with α-actinin for confocal microscopy imaging to obtain z-stacks for 3D myofilament volume analysis. In primary neonatal rat ventricular myocytes (NRVMs), area increased 72% with PE, while volume increased 31%. In hiPSC-cardiomyocytes, area increased 70% with PE and 4-fold with aging; however, volume increased significantly only with aging by 2.3-fold. Analysis of z-height myofilament volume distribution in hiPSC-cardiomyocytes revealed a shift from a fairly uniform distribution in control cells to a basally located volume in a more flat and spread morphology with PE and even more so with aging, a shape that was akin to all NRVMs analyzed. These results suggest that 2D area is not a sufficient measure of hiPSC-cardiomyocyte growth and maturation, and that changes in 3D volume and its distribution are essential for understanding hiPSC-cardiomyocyte biology for disease modeling and regenerative medicine applications. |
---|---|
ISSN: | 1865-5025 1865-5033 |
DOI: | 10.1007/s12195-016-0462-7 |