Accurate discrimination of the wake-sleep states of mice using non-invasive whole-body plethysmography

A major limitation in the study of sleep breathing disorders in mouse models of pathology is the need to combine whole-body plethysmography (WBP) to measure respiration with electroencephalography/electromyography (EEG/EMG) to discriminate wake-sleep states. However, murine wake-sleep states may be...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Scientific reports 2017-01, Vol.7 (1), p.41698-41698, Article 41698
Hauptverfasser: Bastianini, Stefano, Alvente, Sara, Berteotti, Chiara, Lo Martire, Viviana, Silvani, Alessandro, Swoap, Steven J., Valli, Alice, Zoccoli, Giovanna, Cohen, Gary
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A major limitation in the study of sleep breathing disorders in mouse models of pathology is the need to combine whole-body plethysmography (WBP) to measure respiration with electroencephalography/electromyography (EEG/EMG) to discriminate wake-sleep states. However, murine wake-sleep states may be discriminated from breathing and body movements registered by the WBP signal alone. Our goal was to compare the EEG/EMG-based and the WBP-based scoring of wake-sleep states of mice, and provide formal guidelines for the latter. EEG, EMG, blood pressure and WBP signals were simultaneously recorded from 20 mice. Wake-sleep states were scored based either on EEG/EMG or on WBP signals and sleep-dependent respiratory and cardiovascular estimates were calculated. We found that the overall agreement between the 2 methods was 90%, with a high Cohen’s Kappa index (0.82). The inter-rater agreement between 2 experts and between 1 expert and 1 naïve sleep investigators gave similar results. Sleep-dependent respiratory and cardiovascular estimates did not depend on the scoring method. We show that non-invasive discrimination of the wake-sleep states of mice based on visual inspection of the WBP signal is accurate, reliable and reproducible. This work may set the stage for non-invasive high-throughput experiments evaluating sleep and breathing patterns on mouse models of pathophysiology.
ISSN:2045-2322
2045-2322
DOI:10.1038/srep41698