Broad epitope coverage of a human in vitro antibody library

Successful discovery of therapeutic antibodies hinges on the identification of appropriate affinity binders targeting a diversity of molecular epitopes presented by the antigen. Antibody campaigns that yield such broad "epitope coverage" increase the likelihood of identifying candidates wi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:mAbs 2017-01, Vol.9 (1), p.29-42
Hauptverfasser: Sivasubramanian, Arvind, Estep, Patricia, Lynaugh, Heather, Yu, Yao, Miles, Adam, Eckman, Josh, Schutz, Kevin, Piffath, Crystal, Boland, Nadthakarn, Niles, Rebecca Hurley, Durand, Stéphanie, Boland, Todd, Vásquez, Maximiliano, Xu, Yingda, Abdiche, Yasmina
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Successful discovery of therapeutic antibodies hinges on the identification of appropriate affinity binders targeting a diversity of molecular epitopes presented by the antigen. Antibody campaigns that yield such broad "epitope coverage" increase the likelihood of identifying candidates with the desired biological functions. Accordingly, epitope binning assays are employed in the early discovery stages to partition antibodies into epitope families or "bins" and prioritize leads for further characterization and optimization. The collaborative program described here, which used hen egg white lysozyme (HEL) as a model antigen, combined 3 key capabilities: 1) access to a diverse panel of antibodies selected from a human in vitro antibody library; 2) application of state-of-the-art high-throughput epitope binning; and 3) analysis and interpretation of the epitope binning data with reference to an exhaustive set of published antibody:HEL co-crystal structures. Binning experiments on a large merged panel of antibodies containing clones from the library and the literature revealed that the inferred epitopes for the library clones overlapped with, and extended beyond, the known structural epitopes. Our analysis revealed that nearly the entire solvent-exposed surface of HEL is antigenic, as has been proposed for protein antigens in general. The data further demonstrated that synthetic antibody repertoires provide as wide epitope coverage as those obtained from animal immunizations. The work highlights molecular insights contributed by increasingly higher-throughput binning methods and their broad utility to guide the discovery of therapeutic antibodies representing a diverse set of functional epitopes.
ISSN:1942-0862
1942-0870
DOI:10.1080/19420862.2016.1246096