Sphingosine 1-phosphate receptor regulation of N-cadherin mediates vascular stabilization

Vascular stabilization, a process by which nascent vessels are invested with mural cells, is important in angiogenesis. Here we describe the molecular basis of vascular stabilization regulated by sphingosine 1-phosphate (S1P), a platelet-derived lipid mediator. S1P1 receptor-dependent cell-surface t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Genes & development 2004-10, Vol.18 (19), p.2392-2403
Hauptverfasser: Paik, Ji-Hye, Skoura, Athanasia, Chae, Sung-Suk, Cowan, Ann E, Han, David K, Proia, Richard L, Hla, Timothy
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Vascular stabilization, a process by which nascent vessels are invested with mural cells, is important in angiogenesis. Here we describe the molecular basis of vascular stabilization regulated by sphingosine 1-phosphate (S1P), a platelet-derived lipid mediator. S1P1 receptor-dependent cell-surface trafficking and activation of the cell-cell adhesion molecule N-cadherin is essential for interactions between endothelial and mural cells. Endothelial cell S1P1/Gi/Rac pathway induces microtubule polymerization, resulting in trafficking of N-cadherin to polarized plasma membrane domains. S1P treatment modulated the phosphorylation of N-cadherin as well as p120-catenin and induced the formation of cadherin/catenin/actin complexes containing novel regulatory and trafficking factors. The net result of endothelial cell S1P1 receptor activation is the proper trafficking and strengthening of N-cadherin-dependent cell-cell adhesion with mural cells. Perturbation of N-cadherin expression with small interfering RNA profoundly attenuated vascular stabilization in vitro and in vivo. S1P-induced trafficking and activation of N-cadherin provides a novel mechanism for the stabilization of nascent blood vessels by mural cells and may be exploited to control angiogenesis and vascular diseases.
ISSN:0890-9369
1549-5477
DOI:10.1101/gad.1227804