Two NADPH: Protochlorophyllide Oxidoreductase (POR) Isoforms Play Distinct Roles in Environmental Adaptation in Rice
Background NADPH: protochlorophyllide oxidoreductase (POR) is an essential enzyme that catalyzes the photoreduction of protochlorophyllide to chlorophyllide, which is ultimately converted to chlorophyll in developing leaves. Rice has two POR isoforms, OsPORA and OsPORB. OsPORA is expressed in the da...
Gespeichert in:
Veröffentlicht in: | Rice (New York, N.Y.) N.Y.), 2017-12, Vol.10 (1), p.1-1, Article 1 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Background
NADPH: protochlorophyllide oxidoreductase (POR) is an essential enzyme that catalyzes the photoreduction of protochlorophyllide to chlorophyllide, which is ultimately converted to chlorophyll in developing leaves. Rice has two POR isoforms, OsPORA and OsPORB.
OsPORA
is expressed in the dark during early leaf development;
OsPORB
is expressed throughout leaf development regardless of light conditions. The
faded green leaf
(
fgl
) is a loss-of-function
osporB
mutant that displays necrotic lesions and variegation in the leaves due to destabilized grana thylakoids, and has increased numbers of plastoglobules in the chloroplasts. To investigate whether the function of OsPORA can complement that of OsPORB, we constitutively overexpressed
OsPORA
in
fgl
mutant.
Results
In the
35S:OsPORA/fgl
(termed OPAO) transgenic plants, the necrotic lesions of the mutant disappeared and the levels of photosynthetic pigments and proteins, as well as plastid structure, were recovered in developing leaves under natural long days in the paddy field and under short days in an artificially controlled growth room. Under constant light conditions, however, total chlorophyll and carotenoid levels in the developing leaves of OPAO plants were lower than those of wild type. Moreover, the OPAO plants exhibited mild defects in mature leaves beginning at the early reproductive stage in the paddy field.
Conclusions
The physiological function of OsPORB in response to constant light or during reproductive growth cannot be completely replaced by constitutive activity of OsPORA, although the biochemical functions of OsPORA and OsPORB are redundant. Therefore, we suggest that the two OsPORs have differentiated over the course of evolution, playing distinct roles in the adaptation of rice to the environment. |
---|---|
ISSN: | 1939-8425 1939-8433 1934-8037 |
DOI: | 10.1186/s12284-016-0141-2 |