Cooling Effectiveness of a Modified Cold-Water Immersion Method After Exercise-Induced Hyperthermia
Recommended treatment for exertional heat stroke includes whole-body cold-water immersion (CWI). However, remote locations or monetary or spatial restrictions can challenge the feasibility of CWI. Thus, the development of a modified, portable CWI method would allow for optimal treatment of exertiona...
Gespeichert in:
Veröffentlicht in: | Journal of athletic training 2016-11, Vol.51 (11), p.946-951 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Recommended treatment for exertional heat stroke includes whole-body cold-water immersion (CWI). However, remote locations or monetary or spatial restrictions can challenge the feasibility of CWI. Thus, the development of a modified, portable CWI method would allow for optimal treatment of exertional heat stroke in the presence of these challenges.
To determine the cooling rate of modified CWI (tarp-assisted cooling with oscillation [TACO]) after exertional hyperthermia.
Randomized, crossover controlled trial.
Environmental chamber (temperature = 33.4°C ± 0.8°C, relative humidity = 55.7% ± 1.9%).
Sixteen volunteers (9 men, 7 women; age = 26 ± 4.7 years, height = 1.76 ± 0.09 m, mass = 72.5 ± 9.0 kg, body fat = 20.7% ± 7.1%) with no history of compromised thermoregulation.
Participants completed volitional exercise (cycling or treadmill) until they demonstrated a rectal temperature (T
) ≥39.0°C. After exercise, participants transitioned to a semirecumbent position on a tarp until either T
reached 38.1°C or 15 minutes had elapsed during the control (no immersion [CON]) or TACO (immersion in 151 L of 2.1°C ± 0.8°C water) treatment.
The T
, heart rate, and blood pressure (reported as mean arterial pressure) were assessed precooling and postcooling. Statistical analyses included repeated-measures analysis of variance with appropriate post hoc t tests and Bonferroni correction.
Before cooling, the T
was not different between conditions (CON: 39.27°C ± 0.26°C, TACO: 39.30°C ± 0.39°C; P = .62; effect size = -0.09; 95% confidence interval [CI] = -0.2, 0.1). At postcooling, the T
was decreased in the TACO (38.10°C ± 0.16°C) compared with the CON condition (38.74°C ± 0.38°C; P < .001; effect size = 2.27; 95% CI = 0.4, 0.9). The rate of cooling was greater during the TACO (0.14 ± 0.06°C/min) than the CON treatment (0.04°C/min ± 0.02°C/min; t
= -8.84; P < .001; effect size = 2.21; 95% CI = -0.13, -0.08). These differences occurred despite an insignificant increase in fluid consumption during exercise preceding CON (0.26 ± 0.29 L) versus TACO (0.19 ± 0.26 L; t
= 1.73; P = .11; effect size = 0.48; 95% CI = -0.02, 0.14) treatment. Decreases in heart rate did not differ between the TACO and CON conditions (t
= -1.81; P = .09; effect size = 0.45; 95% CI = -22, 2). Mean arterial pressure was greater at postcooling with TACO (84.2 ± 6.6 mm Hg) than with CON (67.0 ± 9.0 mm Hg; P < .001; effect size = 2.25; 95% CI = 13, 21).
The TACO treatment provided faster cooling tha |
---|---|
ISSN: | 1062-6050 1938-162X |
DOI: | 10.4085/1062-6050-51.12.07 |