Epac1 links prostaglandin E2 to β-catenin-dependent transcription during epithelial-to-mesenchymal transition
In epithelial cells, β-catenin is localized at cell-cell junctions where it stabilizes adherens junctions. When these junctions are disrupted, β-catenin can translocate to the nucleus where it functions as a transcriptional cofactor. Recent research has indicated that PGE2 enhances the nuclear funct...
Gespeichert in:
Veröffentlicht in: | Oncotarget 2016-07, Vol.7 (29), p.46354-46370 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In epithelial cells, β-catenin is localized at cell-cell junctions where it stabilizes adherens junctions. When these junctions are disrupted, β-catenin can translocate to the nucleus where it functions as a transcriptional cofactor. Recent research has indicated that PGE2 enhances the nuclear function of β-catenin through cyclic AMP. Here, we aim to study the role of the cyclic AMP effector Epac in β-catenin activation by PGE2 in non-small cell lung carcinoma cells. We show that PGE2 induces a down-regulation of E-cadherin, promotes cell migration and enhances β-catenin translocation to the nucleus. This results in β-catenin-dependent gene transcription. We also observed increased expression of Epac1. Inhibition of Epac1 activity using the CE3F4 compound or Epac1 siRNA abolished the effects of PGE2 on β-catenin. Further, we observed that Epac1 and β-catenin associate together. Expression of an Epac1 mutant with a deletion in the nuclear pore localization sequence prevents this association. Furthermore, the scaffold protein Ezrin was shown to be required to link Epac1 to β-catenin. This study indicates a novel role for Epac1 in PGE2-induced EMT and subsequent activation of β-catenin. |
---|---|
ISSN: | 1949-2553 1949-2553 |
DOI: | 10.18632/oncotarget.10128 |