Novel HIV‑1 Non-nucleoside Reverse Transcriptase Inhibitor Agents: Optimization of Diarylanilines with High Potency against Wild-Type and Rilpivirine-Resistant E138K Mutant Virus

Three series (6, 13, and 14) of new diarylaniline (DAAN) analogues were designed, synthesized, and evaluated for anti-HIV potency, especially against the E138K viral strain with a major mutation conferring resistance to the new-generation non-nucleoside reverse transcriptase inhibitor drug rilpiviri...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of medicinal chemistry 2016-04, Vol.59 (8), p.3689-3704
Hauptverfasser: Liu, Na, Wei, Lei, Huang, Li, Yu, Fei, Zheng, Weifan, Qin, Bingjie, Zhu, Dong-Qin, Morris-Natschke, Susan L, Jiang, Shibo, Chen, Chin-Ho, Lee, Kuo-Hsiung, Xie, Lan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Three series (6, 13, and 14) of new diarylaniline (DAAN) analogues were designed, synthesized, and evaluated for anti-HIV potency, especially against the E138K viral strain with a major mutation conferring resistance to the new-generation non-nucleoside reverse transcriptase inhibitor drug rilpivirine (1b). Promising new compounds were then assessed for physicochemical and associated pharmaceutical properties, including aqueous solubility, log P value, and metabolic stability, as well as predicted lipophilic parameters of ligand efficiency, ligand lipophilic efficiency, and ligand efficiency-dependent lipophilicity indices, which are associated with ADME property profiles. Compounds 6a, 14c, and 14d showed high potency against the 1b-resistant E138K mutated viral strain as well as good balance between anti-HIV-1 activity and desirable druglike properties. From the perspective of optimizing future NNRTI compounds as clinical trial candidates, computational modeling results provided valuable information about how the R1 group might provide greater efficacy against the E138K mutant.
ISSN:0022-2623
1520-4804
DOI:10.1021/acs.jmedchem.5b01827