A rational treatment of Mendelian genetics
The key to a rational treatment of elementary Mendelian genetics, specifically to an understanding of the origin of dominant and recessive traits, lies in the facts that: (1) alleles of genes encode polypeptides; (2) most polypeptides are catalysts, i.e. enzymes or translocators; (3) the molecular c...
Gespeichert in:
Veröffentlicht in: | Theoretical biology and medical modelling 2004-08, Vol.1 (1), p.6-6, Article 6 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The key to a rational treatment of elementary Mendelian genetics, specifically to an understanding of the origin of dominant and recessive traits, lies in the facts that: (1) alleles of genes encode polypeptides; (2) most polypeptides are catalysts, i.e. enzymes or translocators; (3) the molecular components of all traits in all cells are the products of systems of enzymes, i.e. of fluxing metabolic pathways; (4) any flux to the molecular components of a trait responds non-linearly (non-additively) to graded mutations in the activity of any one of the enzymes at a catalytic locus in a metabolic system; (5) as the flux responds to graded changes in the activity of an enzyme, the concentrations of the molecular components of a trait also change.
It is then possible to account rationally, and without misrepresenting Mendel, for: the origin of dominant and recessive traits; the occurrence of Mendel's 3(dominant):1(recessive) trait ratio; deviations from this ratio; the absence of dominant and recessive traits in some circumstances, the occurrence of a blending of traits in others; the frequent occurrence of pleiotropy and epistasis. |
---|---|
ISSN: | 1742-4682 1742-4682 |
DOI: | 10.1186/1742-4682-1-6 |