Light-Activated Staudinger–Bertozzi Ligation within Living Animals
The ability to regulate small molecule chemistry in vivo will enable new avenues of exploration in imaging and pharmacology. However, realization of these goals will require reactions with high specificity and precise control. Here we demonstrate photocontrol over the highly specific Staudinger–Bert...
Gespeichert in:
Veröffentlicht in: | Journal of the American Chemical Society 2016-04, Vol.138 (16), p.5186-5189 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The ability to regulate small molecule chemistry in vivo will enable new avenues of exploration in imaging and pharmacology. However, realization of these goals will require reactions with high specificity and precise control. Here we demonstrate photocontrol over the highly specific Staudinger–Bertozzi ligation in vitro and in vivo. Our simple approach, photocaging the key phosphine atom, allows for the facile production of reagents with photochemistry that can be engineered for specific applications. The resulting compounds, which are both stable and efficiently activated, enable the spatial labeling of metabolically introduced azides in vitro and on live zebrafish. |
---|---|
ISSN: | 0002-7863 1520-5126 |
DOI: | 10.1021/jacs.5b13401 |