On the Use of Self-Organizing Map for Text Clustering in Engineering Change Process Analysis: A Case Study

In modern industry, the development of complex products involves engineering changes that frequently require redesigning or altering the products or their components. In an engineering change process, engineering change requests (ECRs) are documents (forms) with parts written in natural language des...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Computational Intelligence and Neuroscience 2016-01, Vol.2016 (2016), p.1243-1253
Hauptverfasser: Pacella, Massimo, Blaco, Marzia, Grieco, Antonio
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In modern industry, the development of complex products involves engineering changes that frequently require redesigning or altering the products or their components. In an engineering change process, engineering change requests (ECRs) are documents (forms) with parts written in natural language describing a suggested enhancement or a problem with a product or a component. ECRs initiate the change process and promote discussions within an organization to help to determine the impact of a change and the best possible solution. Although ECRs can contain important details, that is, recurring problems or examples of good practice repeated across a number of projects, they are often stored but not consulted, missing important opportunities to learn from previous projects. This paper explores the use of Self-Organizing Map (SOM) to the problem of unsupervised clustering of ECR texts. A case study is presented in which ECRs collected during the engineering change process of a railways industry are analyzed. The results show that SOM text clustering has a good potential to improve overall knowledge reuse and exploitation.
ISSN:1687-5265
1687-5273
DOI:10.1155/2016/5139574